Защита атмосферы

Защита атмосферы

Для защиты воздушного бассейна от негативного антропогенного воздействия в виде загрязнения его вредными веществами используют следующие меры:

¨ экологизацию технологических процессов;

¨ очистку газовых выбросов от вредных примесей;

¨ рассеивание газовых выбросов в атмосфере;

¨ устройство санитарно-защитных зон, архитектурно-планировочные решения и др.

Наиболее радикальная мера охраны воздушного бассейна от загрязнения ¾ экологизация технологических процессов и в первую очередь создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих попадание в атмосферу вредных загрязняющих веществ.

Экологизация технологических процессов предусматривает, в частности, создание непрерывных технологических процессов производства, замену местных котельных установок на централизованное тепло, предварительное очищение топлива и сырья от вредных примесей, замену угля и мазута на природный газ, применение гидрообеспыливания, перевод на электропривод компрессоров, сваебойных агрегатов, насосов и др. Все шире применяют частичную рециркуляцию, т. е. повторное использование отходящих газов.

Учитывая исключительную актуальность охраны атмосферного воздуха от загрязнения отработанными газами (ОГ) автомобилей, первоочередной проблемой является создание экологически «чистых» видов транспорта.

В настоящее время ведется активный поиск более «чистого» топлива, чем бензин. В качестве его заменителя рассматриваются экологически чистое газовое топливо, метиловый спирт (метанол), малотоксичный аммиак и идеальное топливо ¾ водород. Продолжаются интенсивные разработки по замене карбюраторного двигателя на более экологичные типы ¾ дизельный, паровой, газотурбинный и др.

В опытно-конструкторских бюро созданы пробные модели автомобилей, работающих на энергии электрических аккумуляторов в черте города, а за его пределами переходящих на работу на обычных карбюраторных двигателях. Продолжаются работы по созданию идеального с точки зрения экологических требований вида транспорта ¾ автомобиля на солнечных элементах.

К сожалению, нынешний уровень развития экологизации технологических процессов, внедрения замкнутых технологических циклов и т. д. недостаточен для полного предотвращения выбросов токсичных веществ в атмосферу. Поэтому на предприятиях повсеместно используются различные методы очистки отходящих газов от аэрозолей (пыли, золы, сажи) и токсичных газо- и парообразных примесей (NO, NO2. SO2. SO3 и др.).

Для очистки выбросов от аэрозолей применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки.

Сухие пылеуловители (циклоны, пылеосадительные камеры) предназначены для грубой механической очистки выбросов от крупной и тяжелой пыли. Принцип работы ¾ оседание частиц под действием центробежных сил и сил тяжести. Пылегазовый поток вводится в циклон через патрубок (рис. 20.2), далее он совершает вращательно-поступательное движение вдоль корпуса; частицы пыли отбрасываются к стенкам циклона и затем падают вниз в сборник пыли (бункер), откуда периодически удаляются. Для повышения эффективности работы применяют групповые (батарейные) циклоны.

Рис. 20.2. Схема устройства циклона:
1 ¾ корпус; 2 ¾ входной патрубок; 3 ¾ выхлопная труба; 4 ¾ сборник пыли

Мокрые пылеуловители (скрубберы, турбулентные, газопромыватели и др.) требуют подачи воды и работают по принципу осаждения частиц пыли на поверхность капель под действием сил инерции и броуновского движения. Наибольшее практическое применение получили скрубберы Вентури (рис. 20.3), которые обеспечивают 99% очистки от частиц размером более 2 мкм и как все мокрые пылеуловители незаменимы при очистке от пыли взрывоопасных и горючих газов.

Рис. 20.3. Схема устройства скруббера Вентури:
1 ¾ труба Вентури; 2 ¾ скруббер-каплеуловитель

Фильтры (тканевые, зернистые) способны задерживать мелкодисперсные частицы пыли до 0,05 мкм. Особенно эффективны рукавные фильтры с тканями из синтетических волокон повышенной термостойкости (250-300 °С) типа «сульфон-Т», фильтровальные металлические ткани (до 800 °С), а также фильтры из тканей типа ФПП и ФПА, дающие высокую степень очистки (99,9%).

Электрофильтры ¾ наиболее совершенный способ очистки газов от взвешенных в них частиц пыли размером до 0,01 мкм при высокой эффективности очистки газов (99,0-99,5%). Принцип работы всех типов электрофильтров основан на ионизации пылегазового потока у поверхности коронирующих электродов. Приобретая отрицательный заряд, пылинки движутся к осадительному электроду, имеющему знак, обратный заряду коронирующего электрода. При встряхивании электродов осажденные частички пыли под действием силы тяжести падают вниз в сборник пыли (рис. 20.4). Электроды требуют большого расхода электроэнергии ¾ это их основной недостаток.

Рис. 20.4. Схема устройства трехпольного электрофильтра:
1 ¾ корпус; 2 ¾ электрод осадительный; 3 ¾ электрод коронирующий; 4 ¾ механизм встряхивания
коронирующих электродов; 5 ¾ механизм встряхивания осадительных электродов;
6 ¾ газораспределительная решетка; 7 ¾ сборник пыли; 8 ¾ изолятор

Наиболее эффективны комбинированные методы очистки от пыли. Например, отличные результаты дает очистка агломерационных газов в батарейных циклонах с последующей доочисткой в скрубберах Вентури, а также в электрофильтрах. (Защита окружающей среды…, 1993).

Способы очистки выбросов от токсичных газо- и парообразных примесей (NO, NO2. SO2 и др.) подразделяют на три основные группы: 1) поглощение примесей путем применения каталитического превращения; 2) промывка выбросов растворителями примеси (абсорбционный метод) и 3) поглощение газообразных примесей твердыми телами с ультрамикроскопической структурой (адсорбционный метод).

С помощью каталитического метода превращают токсичные компоненты промышленных выбросов в вещества безвредные или менее вредные для окружающей среды путем введения в систему дополнительных веществ, называемых катализаторами. Широко применяют палладийсодержащие и ванадиевые катализаторы. С их помощью происходит каталитическое досжигание оксида углерода до диоксида и диоксида серы до оксида. Возможно также восстановление оксидов азота аммиаком до элементарного азота.

Одна из разновидностей этого метода ¾ дожигание вредных примесей с помощью газовых горелок (факельное сжигание) широко используется на нефтеперерабатывающих заводах.

Абсорбционный метод основан на поглощении вредных газообразных примесей жидким поглотителем (абсорбентом). В качестве абсорбента используют воду, растворы щелочей (соды), аммиака и др. Газообразные цианистые соединения абсорбируют, например, 5%-ным раствором железного купороса. Устройство, в котором осуществляют процесс абсорбции, называют абсорбером.

Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов ¾ твердых тел с ультрамикроскопической структурой (активированный уголь и глинозем, силикагель, цеолиты, сланцевая зола и другие вещества). Например, на АЭС широко применяется метод очистки технологических газов путем сорбции радиоактивных продуктов на угольных фильтрах ¾ адсорбентах, которые позволяют надежно предотвратить загрязнение атмосферы при всех режимах работы АЭС (Защита окружающей среды…, 1993).

Рассеивание газовых примесей в атмосфере . Используют для снижения их опасных концентраций. Как показывает опыт в приземном слое атмосферы вблизи крупных энергетических установок (ТЭЦ, ТЭС, ГРЭС) и других предприятий, концентрация вредных веществ в отходящих газах может превышать предельно допустимые нормы, несмотря на все применяемые меры по очистке газов и экологизацию технологических процессов.

С помощью снижения опасных концентраций примесей до уровня, соответствующего ПДК, применяют рассеивание пылегазовых выбросов с помощью высоких дымовых труб. Чем выше труба, тем больше ее рассеивающий эффект. На ряде предприятий высота дымовых труб достигает более 300 м. Так, на медно-никелевом комбинате в г. Садбери (Канада) высота трубы 407 м. Значительную высоту (не менее 100 м) имеют вентиляционные (выбросные) трубы на АЭС для рассеивания радиоактивных выбросов. Следует признать, что рассеивание газовых примесей в атмосфере ¾ это далеко не самое лучшее решение проблемы, связанной с загрязнением воздушного бассейна. По мнению Э. Гора (1993), «применение высоких дымовых труб хотя и помогло уменьшить локальное дымовое загрязнение, осложнило в то же время региональные проблемы выпадения кислотных дождей. Чем выше от поверхности земли происходит выброс загрязняющих газов, тем дальше от своего источника они распространяются. То, что было когда-то дымной мглой над Питтсбургом, становилось кислотным снегопадом в Лабрадоре. Примеси, досаждающие лондонцам в виде смога, губят листву в лесах Скандинавии».

Рассеивание вредных веществ в атмосфере ¾ это временное, вынужденное мероприятие, которое осуществляется при отсутствии надежных методов очистки для того или иного вещества, а также вследствие того, что существующие очистные устройства не обеспечивают полной очистки выбросов от вредных веществ.

Защита атмосферного воздуха от вредных выбросов предприятий в значительной степени связана с устройством санитарно-защитных зон и архитектурно-планировочными мероприятиями.

Санитарно-защитная зона ¾ это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства (выбросы пыли и иные виды загрязнения среды).

Ширину санитарно-защитных зон устанавливают в зависимости от класса производства, степени вредности и количества выделенных в атмосферу веществ и принимают равной от 50 до 1000 м. Например, для цементных заводов производительностью более 150 тыс. т цемента в год (I класс производства) ширина санитарно-защитной зоны ¾ 1000 м, а для предприятий по изготовлению камышита (V класс производства) ¾ 50 м.

Санитарно-защитная зона должна быть благоустроена и озеленена газоустойчивыми породами деревьев и кустарников, например, акацией белой, тополем канадским, елью колючей, шелковицей, кленом остролистным, вязом листовитым и т. д. Об эффективности озеленения свидетельствуют следующие данные: хвоя одного гектара елового леса улавливает 32 т пыли, листва букового леса ¾ 68 т. На расстоянии 500 м от предприятия при отсутствии озеленения загрязнение воздуха SO2. H2 S, и NO2 в два раза ниже, чем у источника загрязнения, а при наличии озеленения ¾ в три — четыре раза ниже (Гаев и др. 1990).

Архитектурно-планировочные мероприятия включают правильное взаимное размещение источников выброса и населенных мест с учетом направления ветров, выбор под застройку промышленного предприятия ровного возвышенного места, хорошо продуваемого ветрами, сооружение автомобильных дорог в обход населенных пунктов и др.

Помимо рассмотренных выше мер по защите воздушного бассейна предусматривается также охрана озонового слоя.

В Законе РФ «Об охране окружающей среды» (2002 г.) имеется отдельная статья (ст. 54), посвященная этой проблеме, что свидетельствует об исключительной важности ее решения. В комплекс мер по охране озонового слоя от экологически опасных изменений входят:

¨ организация наблюдений за изменением озонового слоя под воздействием хозяйственной деятельности и иных процессов;

¨ соблюдение нормативов допустимых выбросов веществ, вредно воздействующих на состояние озонового слоя;

¨ регулирование производства и использования химических веществ, разрушающих озоновый слой и др.

В 1993 г. в нашей стране была создана Межведомственная комиссия, в задачу которой входила координация деятельности различных организаций по выполнению международных обязательств по охране озонового слоя и прекращению выпуска озоноразрушающих веществ.

Ведется также интенсивная разработка и внедрение мероприятий по резкому сокращению выбросов соединений серы, оксидов азота и других опаснейших загрязнителей атмосферного воздуха.

Защита атмосферы

Защита атмосферы включает комплекс технических и административннх мер, прямо или косвенно направленных на прекращение или по крайней мере уменьшение возрастающего загрязнения атмосферы, являющегося следствнем промышленного развития.

Территориально-технологические проблемы включают как вопросы местоположения источников загрязнения атмосферы, так и ограничения или устранения ряда отрицательных зффектов. Поиск оптимальных решений по ограничению загрязнения атмосферы данным источником интенсифицировался параллельно с ростом уровня технических знаний и промышленным развитием, — разработан ряд специальных мер по защите атмос­феры. Кроме того, начинается интегрирование процесса поиска оптимальных решений по ограничению эффектов загрязнения атмосферы с комплексным подходом к защите атмосферы, которое и рассматривает взаимосвязи между отдельными составляющими окружающей среды. Таким образом, исследование эффектов загрязнения атмосферы становится все более зависимой, но не менее важной частью в области защиты атмосферы.

Придание исследованиям по защите атмосферы целенаправленного характера должно включать борьбу против ее загряз­нения, особенно промышленного, а также от транспортных средств и других источников. Они не могут проводиться, например, только ради постановки задач, но должны указывать пути улучшения существующего положения. Таким образом, эта об­ласть исследований не может пассивно комментировать сложившуюся ситуацию и делать прогнозы, основывающиеся на данных самих “поставщиков загрязнений”, она должна разрабатывать концепции, промежуточные и долговременные планы, а также конкретные программы, направленные на активное ограничение неблагоприятного хода событий, используя при этом локальную кратковременную тактику и долговременную общенациональную стратегию.

Защита атмосферы не может быть успешной при односторонних и половинчатых мерах, направленных против конкрет­ных источников загрязнения. Наилучшие результаты могут быть получены лишь при объективном, многостороннем подходе к определению причин загрязнения атмосферы, вкладу отдельных источников и выявленню реальных возможностей ограничения этих выбросов.

В городских и промышленных конгломератах, где имеются значительные концентрации малых и больших источников загрязняющих веществ, лишь комплексный подход, базирующийся на конкретных ограничениях для конкретных источников или их групп, может привести к установлению приемлемого уровня загрязнения атмосферы при сочетании оптимальных экономических и технологических условий. Исходя из этих положений необходим независимый источник информации, который располагал бы сведениями не только о степени загрязнения атмосферы, но и видах технологических й административных мер. Объективная оценка состояния атмосферы совместно со сведениями обо всех возможностях уменьшения выбросов позволяет создать реальние планы и долговременные прогнозы загрязнения атмо­сферы применительно к наихудшим и наиболее благоприятным обстоятельствам и формирует твердую основу для выработки и укрепления программы защиты атмосферы.

По продолжительности программы защиты атмосферы подразделяются на долговременные, средней продолжительности и кратковременные; методы подготовки планов по защите ат­мосферы базируются на обычных методах планирования и координируются так, чтобы удовлетворять долговременные требования в этой области.

Неотъемлемой частью кратковременного и средней продолжительности планирования являются незамедлительные меры по предотвращению дальнейшего загрязнения наиболее неблагополучных в этом отношении районов путем установки оборудования, конструированного специально для снижения выбросов от существующих источников загрязнений. Если предложения по долгосрочном мерам для защиты атмосферы представлены в виде просто рекомендаций, то они, как правило, не реализуются, поскольку требования, предъявляемые промышленности часто не совпадают с ее интересами и планами развития.

Важнейший фактор в формировании прогнозов по защите атмосферы — количественная оценка будущих выбросов. На основании анализа источников выбросов в отдельных промышленных районах, особенно в результате процессов сгорания, за­ведена общенациональная оценка основных источников твер­дых и газообразных выбросов за последние 10—14 лет. Затем сделан прогноз о возможном уровне выбросов на предстоящие 10—15 лет. При этом были учтены два направления развития национальной экономики: 1) пессимистическая опенка—допущение о сохранении существующего уровня технологии и ограничений по выбросам, а также о сохранении существующих методов контроля загрязнений на действующих источниках и о применении современных высокоэффективных сепараторов только на новых источниках выбросов; 2) оптимистнческая оценка—допущение о максимальном развитии и использовании новой технологии с ограниченным количеством отходов и применении методов, снижающнх твердые и газообразные выбросы как от существующих, так и от новых источников. Таким образом, оптимистическая оценка становится целью при уменьшении выбросов.

Составление прогноза включает: определение основных мер, необходимых в данной технико-экономической ситуации; установление альтернативных путей промышленного развития (особенно для топливных и других энергетических источников);

оценку комплексных капиталовложений, требуемых для реализации всего стратегического плана; сопоставление этих затрат с ущербом от загрязнения атмосферы. Соотношение капитало­вложений на защиту атмосферы (включая оборудование для ограничения выбросов от существующих и вновь вводимых источников) и суммарного ущерба от загрязнения атмосферы составляет примерно 3. 10.

Вполне справедливо будет включить стоимость оборудования для ограничения выбросов в себестоимость продукции, а не в затраты на защиту атмосферы, тогда указанное соотношение капиталовложений и ущерба от загрязнений составит 1. 10.

Отдельные области исследований по защите атмосферы часто группируются в список в соответствии с рангом процессов, приводящие к ее загрязнению.

1. Источники выбросов (местоположение источников, применяемое сырье и методы его переработки, а также технологические процессы).

2. Сбор и накопление загрязняющих веществ (твердых, жидких и газообразных).

3. Определение и контроль за выбросами (методы, приборы, технологии).

4. Атмосферные процессы (расстояние от дымовых труб, пе­ренос на дальние расстояния, химические превращения загряз­няющих веществ в атмосфере, расчет ожидаемого загрязнения и составление прогнозов, оптимизация высоты дымовых труб).

5. Фиксация выбросов (методы, приборы, стационарные и мобильные замеры, точки замеров, сетки замеров).

6. Воздействие загрязненной атмосферы на людей, животных, растения, строения, материалы и т. д.

7. Комплексная защита атмосферы в сочетании с защнтой окружающей среди.

При этом необходимо учитывать различные точки зрення, основными из которых являются:

— законодательная (административные меры);

— организационная и контролирующая;

— прогностическая с созданием проектов, программ и планов;

— экономическая с получением дополнительных экономических эффектов;

— научная, проведение исследований и разработок;

— испытания н измерения;

— реализация, включая производство продукция и создание установок;

— практическое применение и эксплуатация;

— стандартизация и унификация.

Рациональное использование воздуха

Качество атмосферы и особенности ее загрязнения;

Основные химические примеси, загрязняющие атмосферу.

III. Методы и средства защиты атмосферы:

Основные методы защиты атмосферы от химических примесей;

Классификация систем очистки воздуха и их параметры.

IV. Список литературы

I. Строение и состав атмосферы

Атмосфера – это газообразная оболочка Земли, состоящая из смеси различных газов и простирающаяся на высоту более 100 км. Она имеет слоистое строение, которое включает ряд сфер и расположен­ные между ними паузы. Масса атмосферы составляет 5,91015 т, объ­ем – 13,2-1020 м3. Атмосфера играет огромную роль во всех природ­ных процессах и, в первую очередь, регулирует тепловой режим и общие климатические условия, а также защищает человечество от вредного космического излучения.

Основными газовыми компонентами атмосферы являются азот (78%), кислород (21%), аргон (0,9%) и углекислый газ (0,03%). Газовый состав атмосферы меняется с высотой. В при­земном слое из-за антропогенных воздействий количество угле­кислого газа возрастает, а кислорода снижается. В отдельных ре­гионах в результате хозяйственной деятельности в атмосфере уве­личивается количество метана, оксидов азота и других газов, вызывающих такие неблагоприятные явления, как парниковый эффект, разрушение озонового слоя, кислотные дожди, смог.

Циркуляция атмосферы влияет на режим рек, почвенно-растительный покров, а также экзогенные процессы рельефообразования. И, наконец, воздух – необходимое условие жизни на Земле.

Наиболее плотный слой воздуха, прилегающий к земной по­верхности, носит название тропосферы. Толщина ее составляет: на средних широтах 10-12 км, над уровнем моря и на полюсах 1-10 км, а на экваторе 16-18 км.

Из-за неравномерности нагрева солнечной энергией в атмо­сфере образуются мощные вертикальные потоки воздуха, а в приземном слое отмечается неустойчивость его температуры, относи­тельной влажности, давления и т.п. Но при этом температура в тропосфере по высоте является стабильной и уменьшается на 0,6°С на каждые 100 м в диапазоне от +40 до -50°С. В тропосфере содержится до 80% всей влаги, имеющейся в атмосфере, в ней об­разуются облака и формируются все виды осадков, которые по своей сути являются очистителями воздуха от примесей.

Выше тропосферы расположена стратосфера, а между ними на­ходится тропопауза. Толщина стратосферы составляет около 40 км, воздух в ней заряжен, влажность его невысока, при этом темпера­тура воздуха от границы тропосферы до высоты 30 км над уров­нем моря постоянна (около -50°С), а затем она постепенно по­вышается до +10°С на высоте 50 км. Под воздействием космиче­ского излучения и коротковолновой части ультрафиолетового излучения Солнца молекулы газов в стратосфере ионизируются, в результате образуется озон. Озоновый слой, располагаемый до 40 км, играет очень большую роль, оберегая все живое на Земле от ультрафиолетовых лучей.

Стратопауза отделяет стратосферу от лежащей выше мезосферы, в которой количество озона уменьшается, а температура на высоте примерно 80 км над уровнем моря составляет -70°С. Рез­кий перепад температур между стратосферой и мезосферой объ­ясняется наличием озонового слоя.

II. Загрязнение атмосферы

1) Качество атмосферы и особенности ее загрязнения

Под качеством атмосферы понимают совокупность ее свойств, определяющих степень воздействия физических, хими­ческих и биологических факторов на людей, растительный и жи­вотный мир, а также на материалы, конструкции и окружающую среду в целом. Качество атмосферы зависит от ее загрязненности, причем сами загрязнения могут попадать в нее от природных и ан­тропогенных источников. С развитием цивилизации в загрязнении атмосферы все больше и больше превалируют антропогенные ис­точники.

В зависимости от формы материи загрязнения подразделяют на вещественные (ингредиентные), энергетические (параметрические) и вещественно-энергетические. К первым относят механические, химические и биологические загрязнения, которые обычно объединяют общим понятием «примеси», ко вторым — тепловые, акустические, электромагнитные и ионизирующие излучения, а также излучения оптического диапазона; к третьим — радионуклиды.

В глобальном масштабе наибольшую опасность представляет загрязнение атмосферы примесями, так как воздух выступает посредником загрязнения всех других объ­ектов природы, способствуя распространению больших масс за­грязнения на значительные расстояния. Промышленными вы­бросами, переносимыми по воздуху, загрязняется Мировой океан, закисляются почва и вода, изменяется климат и разрушается озоновый слой.

Под загрязнением атмосферы понимают привнесение в нее примесей, которые не содержатся в природном воздухе или изменя­ют соотношение между ингредиентами природного состава воздуха.

Численность населения Земли и темпы его роста являются предопределяющими факторами повышения интенсивности за­грязнения всех геосфер Земли, в том числе и атмосферы, так как с их увеличением возрастают объемы и темпы всего того, что добывается, производится, потребляется и отправляется в отходы. Наибольшее загрязнение атмосферы наблюдается в городах, где обычные загрязнители — это пыль, сернистый газ, оксид углерода, диоксид азота, сероводород и др. В некоторых городах в связи с особенностями промышленного производства в воздухе содержатся специфические вредные вещества, такие, как серная и соляная кислота, стирол, бенз(а)пирен, сажа, марганец, хром, свинец, метилметакрилат. Всего в городах насчитывается несколько сотен различных загрязнителей воздуха.

Особую тревогу вызывают загрязнения атмосферы вновь создаваемыми веществами и соединениями. ВОЗ отмечает, что из 105 известных элементов таблицы Менделеева 90 используются в производственной практике, а на их базе получено свыше 500 новых химических соединений, почти 10% из которых вредные или особо вредные.

2) Основные химические примеси,

Различают естественные примеси, т.е. обусловленные природными процессами, и антропогенные, т.е. возни­кающие в результате хозяйственной деятельности человечества (рис. 1). Уровень загрязнения атмосферы примесями от естест­венных источников является фоновым и имеет малые отклонения от среднего уровня во времени.

Защита атмосферы

Рис. 1. Схема процессов выбросов веществ в атмосферу и трансформации

исходных веществ в продукты с последующим выпадением в виде осадков

Антропогенные загрязнения отличаются многообразием ви­дов примесей и многочисленностью источников их выброса. Наиболее устойчивые зоны с повышенными концентрациями загрязнений возникают в местах активной жизнедеятельности че­ловека. Установлено, что каждые 10-12 лет объем мирового про­мышленного производства удваивается, а это сопровождается примерно таким же ростом объема выбрасываемых загрязнений в окружающую среду. По ряду загрязнений темпы роста их выбро­сов значительно выше средних. К таковым относятся аэрозоли тяжелых и редких металлов, синтетические соединения, не суще­ствующие и не образующиеся в природе, радиоактивные, бакте­риологические и другие загрязнения.

Примеси поступают в атмосферу в виде газов, паров, жидких и твердых частиц. Газы и пары образуют с воздухом смеси, а жид­кие и твердые частицы — аэрозоли (дисперсные системы), которые подразделяют на пыль (размеры частиц более 1 мкм), дым (разме­ры твердых частиц менее 1 мкм) и туман (размер жидких частиц менее 10 мкм). Пыль, в свою очередь, может быть крупнодисперс­ной (размер частиц более 50 мкм), среднедисперсной (50-10 мкм) и мелкодисперсной (менее 10 мкм). В зависимости от размера жидкие частицы подразделяются на супертонкий туман (до 0,5 мкм), тонкодисперсный туман (0,5-3,0 мкм), грубодисперсный ту­ман (3-10 мкм) и брызги (свыше 10 мкм). Аэрозоли чаще полидисперсные, т.е. содержат частицы различно­го размера.

Основными химическими примесями, загрязняющими атмо­сферу, являются следующие: оксид углерода (СО), диоксид углерода (СО2), диоксид серы (SO2), оксиды азота, озон, углеводороды, соединения свинца, фреоны, промышленные пыли.

Основными источниками антропогенных аэрозольных загряз­нений воздуха являются теплоэлектростанции (ТЭС), потребляю­щие уголь высокой зольности, обогатительные фабрики, метал­лургические, цементные, магнезитовые и другие заводы. Аэро­зольные частицы от этих источников отличаются большим химическим разнообразием. Чаще всего в их составе обнаружива­ются соединения кремния, кальция и углерода, реже – оксиды ме­таллов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, ко­бальта, молибдена, а также асбест. Еще большее разнообразие свойственно органической пыли, включающей алифатические и ароматические углеводороды, соли кислот. Она образуется при сжигании остаточных нефтепродуктов, в процессе пиролиза на нефтеперерабатывающих, нефтехимических и других подобных предприятиях.

К постоянным источникам аэрозольного загрязнения отно­сятся промышленные отвалы – искусственные насыпи из переот­ложенного материала, преимущественно вскрышных пород, об­разующихся при добыче полезных ископаемых или же из отходов предприятий перерабатывающей промышленности, ТЭС. Произ­водство цемента и других строительных материалов также являет­ся источником загрязнения атмосферы пылью.

Сжигание каменного угля, производство цемента и выплав­ка чугуна дают суммарный выброс пыли в атмосферу, равный 170 млн т/г.

Значительная часть аэрозолей образуется в атмосфере при взаимодействии твердых и жидких частиц между собой или с во­дяным паром. К опасным факторам антропогенного характера, способст­вующим серьезному ухудшению качества атмосферы, следует от­нести ее загрязнение радиоактивной пылью. Время пребывания мелких частиц в ниж­нем слое тропосферы составляет в среднем несколько суток, а в верхнем – 20-40 суток. Что касается частиц, попавших в страто­сферу, то они могут находиться в ней до года, а иногда и больше.

III. Методы и средства защиты атмосферы

1) Основные методы защиты атмосферы

от химических примесей

Все известные методы и средства защиты атмосферы от хими­ческих примесей можно объединить в три группы.

В первую группу входят мероприятия, направленные на сни­жение мощности выбросов, т.е. уменьшение количества выбра­сываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обра­ботки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нор­мированию выбросов как на отдельных предприятиях и устройст­вах, так и в регионе в целом.

Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют:

замену менее экологичных видов топлива экологичными;

сжигание топлива по специальной технологии;

создание замкнутых производственных циклов.

В первом случае применяют топливо с более низким баллом загрязнения атмосферы. При сжигании различных топлив такие показатели, как зольность, количество диоксида серы и оксидов азота в выбросах, могут сильно различаться между собой, по­этому введен суммарный показатель загрязнения атмосферы в баллах, который отражает степень вредного воздействия на че­ловека.

Сжигание топлива по особой технологии (рис. 2) осуществ­ляется либо в кипящем (псевдоожиженном) слое, либо предвари­тельной их газификацией.

Защита атмосферы

Рис. 2. Схема тепловой электростанции с использованием дожигания

топочных газов и впрыскиванием сорбента: 1 — паровая турбина; 2 — горелка;

3 — бойлер; 4 — электроосадитель; 5 — генератор

Для уменьшения мощности выброса серы твердое, порошко­образное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ (инертных или реакционно-способных). Твердые частицы вдува­ются в проходящие газы, где они завихряются, интенсивно пере­мешиваются и образуют принудительно равновесный поток, ко­торый в целом обладает свойствами жидкости.

Предварительной газификации подвергаются уголь и нефтя­ные топлива, однако на практике чаще всего применяют газифи­кацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концен­трации диоксида серы и твердых частиц в их выбросах будут ми­нимальными.

Одним из перспективных способов защиты атмосферы от хи­мических примесей является внедрение замкнутых производст­венных процессов, которые сводят к минимуму выбрасываемые в атмосферу отходы, вторично используя их и потребляя, т. е. пре­вращая их в новые продукты.

2) Классификация систем очистки воздуха и их параметры

По агрегатному состоянию загрязнители воздуха подразделя­ются на пыли, туманы и газопарообразные примеси. Промыш­ленные выбросы, содержащие взвешенные твердые или жидкие частицы, представляют собой двухфазные системы. Сплошной фазой в системе являются газы, а дисперсной – твердые частицы или капельки жидкости.

Системы очистки воздуха от пыли (рис. 3) делятся на четыре основные группы: сухие и мокрые пылеуловители, а также элек­трофильтры и фильтры.

Защита атмосферы

Рис. 3. Системы и методы очистки вредных выбросов

При повышенном содержании пыли в воздухе используют пылеуловители и электрофильтры. Фильтры применяют для тон­кой очистки воздуха с концентрацией примесей менее 100 мг/м3.

Для очистки воздуха от туманов (например, кислот, щелочей, масел и др. жидкостей) используют системы фильтров, называе­мых туманоуловителями.

Средства защиты воздуха от газопарообразных примесей зави­сят от выбранного метода очистки. По характеру протекания фи­зико-химических процессов выделяют метод абсорбции (про­мывка выбросов растворителями примеси), хемосорбции (про­мывка выбросов растворами реагентов, связывающих примеси химически), адсорбции (поглощение газообразных примесей за счет катализаторов) и термической нейтрализации.

Все процессы извлечения из воздуха взвешенных частиц включают, как правило, две операции: осаждение частиц пыли или капель жидкости на сухих или смоченных поверхностях и удаление осадка с поверхностей осаждения. Основной операцией является осаждение, по ней собственно и классифицируются все пылеуловители. Однако вторая операция несмотря на кажущуюся простоту связана с преодолением ряда технических трудностей, часто оказывающих решающее влияние на эффективность очист­ки или применимость того или иного метода.

Выбор того или иного пылеулавливающего устройства, кото­рое представляет систему элементов, включающую пылеулови­тель, разгрузочный агрегат, регулирующее оборудование и вен­тилятор, предопределяется дисперсным составом улавливаемой частицы промышленной пыли. Поскольку частицы имеют раз­нообразную форму (шарики, палочки, пластинки, игла, волокна и т.д.), то для них понятие размера условно. В общем случае принято характеризовать размер частицы величиной, опреде­ляющей скорость ее осаждения, – седиментационным диамет­ром. Под ним подразумевают диаметр шара, скорость осаждения и плотность которого равны скорости осаждения и плотности частиц.

Для очистки выбросов от жидких и твердых примесей приме­няют различные конструкции улавливающих аппаратов, рабо­тающих по принципу:

инерционного осаждения путем резкого изменения направ­ления вектора скорости движения выброса, при этом твердые частицы под действием инерционных сил будут стремиться дви­гаться в прежнем направлении и попадать в приемный бункер;

осаждения под действием гравитационных сил из-за раз­
личной кривизны траекторий движения составляющих выброса
(газов и частиц), вектор скорости движения которого направлен
горизонтально;

осаждения под действием центробежных сил путем прида­ния выбросу вращательного движения внутри циклона, при этом твердые частицы отбрасываются центробежной силой к сетке, так как центробежное ускорение в циклоне до тысячи раз больше ус­корения силы тяжести, это позволяет удалить из выброса даже весьма мелкие частицы;

механической фильтрации – фильтрации выброса через по­ристую перегородку (с волокнистым, гранулированным или по­ристым фильтрующим материалом), в процессе которой аэрозольные частицы задерживаются, а газовая составляющая полно­стью проходит через нее.

Процесс очистки от вредных примесей характеризуется тремя основными параметрами: общей эффективностью очистки, гид­равлическим сопротивлением, производительностью. Общая эф­фективность очистки показывает степень снижения вредных при­месей в применяемом средстве. Гидравлическое сопротивление определяется как разность давления на входе и выходе из системы. Производительность систем очистки показывает, какое коли­чество воздуха проходит через нее в единицу времени (м3/ч).

Инженерная экология: Учебник / Под ред. проф. В.Т.Медведева. – М. Гардарики, 2002. – 687 с.

Инженерная экология и экологический менеджмент: Учебник / Под ред. Н.И.Иванова, И.М.Фадина. – М. Логос, 2003. – 528 с.

Родзевич Н.Н. Пашканг К.В. Охрана и преобразование природы. – М. Просвещение, 1986. – 288 с.

Защита атмосферы от вредных выбросов

Глава 1. Строение атмосферы


1.1 Экологические функции атмосферы


Глава 2. Основные загрязнители атмосферного воздуха


Глава 3. Средства защиты атмосферы


Глава 4. Оборудования для очистки выбросов


4.1 Устройства для очистки технологических выбросов в атмосферу от аэрозолей


4.2 Способы очистки от газо- и парообразных примесей

Глава 5. Охрана атмосферного воздуха

Заключение


Список использованной литературы

В современный период атмосфера Земли претерпевает множественные изменения коренного характера: модифицируются ее свойства и газовый состав, возрастает опасность разрушения ионосферы и стратосферного озона; повышается ее запыленность; нижние слои атмосферы насыщаются вредными доля живых организмов газами и веществами промышленного и другого хозяйственного происхождения. В следствии огромных выбросов техногенных газов и веществ, достигающих многих миллиардов тонн в год происходит нарушение газового состава атмосферы. Весьма важную роль в составе атмосферы играет двуокись углерода (углекислый газ), который играет важную роль не только в жизнедеятельности человека, но и в выполнении атмосферной функции предохранения подстилающей поверхности от перегрева и переохлаждения. Однако, хозяйственная деятельность человека нарушила естественный баланс выделения и ассимиляции СО2 в природе, в результате чего его концентрация в атмосфере увеличивается.

Многие современные техногенные вещества при попадании в атмосферу представляют собой немалую угрозу для жизни человека. Они наносят большой ущерб здоровью людей и живой природе. Некоторые из этих веществ могут переносится ветрами на большие расстояния. Для них не существует границ государств, в следствии чего данная проблема является международной.

Основными загрязнителями такого плана являются оксиды серы (в особенности двуокись серы — сернистый ангидрид), а также оксиды азота. Быстрое накопление этих загрязнителей в атмосфере северного полушария (годовой прирост около 5%) породило такое явление, как кислые и подкисленные осадки. Эти осадки пагубно влияют на биологическую продуктивность почв и водоемов, наносят большой экономический ущерб.

Наконец, еще одна крупная проблема, это увеличение запыленности атмосферы вследствие антропогенных факторов. По различным оценкам, поступление техногенных, взвешенных в воздухе частиц (аэрозолей) в атмосферу Земли достигает ежегодно 1 — 2,6 млрд. т и равно количеству аэрозолей природного происхождения. В результате запыленность атмосферы в целом увеличилось за последние 50 лет на 70%.

Как видим ситуация только ухудшается, поэтому атмосфере необходима защита.

Глава 1. Строение атмосферы

Атмосфера, общая масса которой составляет 5,15*1018 кг, простирается вверх от поверхности Земли примерно до 3 тыс. км. С высотой меняются химический состав и физические свойства атмосферы, поэтому ее подразделяют на тропосферу, стратосферу, мезосферу, ионосферу (термосферу) и экзосферу.

Основная масса воздуха в атмосфере (до 80%) находится в нижнем, приземном слое — тропосфере. Толщина тропосферы в среднем 11 — 12 км: 8 — 10 км — над полюсами, 16 — 18 км — над экватором. При удалении от поверхности Земли в тропосфере происходит понижение температуры на 6’С на 1 км. На высоте 18 — 20 км плавное уменьшение температуры прекращается, она остается почти постоянной: — 60. — 70`С. Этот участок атмосферы называется тропопаузой. Следующий слой — стратосфера — занимает высоту 20 — 50 км от земной поверхности. В ней сосредоточена остальная (20%) часть воздуха. Здесь температура повышается при удалении от поверхности Земли на 1 — 2’С на 1 км и в стратопаузе на высоте 50 — 55 км доходит до 0’С. Далее на высоте 55— 80 км расположена мезосфера. При удалении от Земли температура понижается на 2 — 3’С на 1 км, и на высоте 80 км, в мезопаузе, она достигает — 75. — 90’С. Термосфера и экзосфера, занимающие высоты соответственно 80 — 1000 и 1000 — 2000 км, представляют собой наиболее разреженные части атмосферы. Здесь встречаются лишь отдельные молекулы, атомы и ионы газов, плотность которых в миллионы раз меньше, чем у поверхности Земли. Следы газов обнаружены до высоты 10 — 20 тыс. км.

Толщина воздушной оболочки сравнительно невелика при сопоставлении с космическими расстояниями: она составляет одну четвертую радиуса Земли и одну десятитысячную часть расстояния от Земли до Солнца. Плотность атмосферы на уровне моря равна 0,001 г/см3, т.е. в тысячу раз меньше плотности воды.

Между атмосферой, земной поверхностью и другими сферами Земли происходит постоянный обмен теплом, влагой и газами, который вместе с циркуляцией воздушных масс в атмосфере влияет на основные климатообразующие процессы. Атмосфера защищает живые организмы от мощного потока космического излучения. Ежесекундно на верхние слои атмосферы обрушивается поток космических лучей: гамма, рентгеновские, ультрафиолетовые, видимые, инфракрасные. Если бы все они достигали земной поверхности, то в течение нескольких мгновений уничтожили бы все живое.

Важнейшее защитное значение имеет озоновый экран. Он расположен в стратосфере на высоте от 20 до 50 км от поверхности Земли. Общее количество озона (О3) в атмосфере оценивается в 3,3 млрд. т. Мощность этого слоя сравнительно небольшая: суммарно она составляет 2 мм на экваторе и 4 мм у полюсов при нормальных условиях. Максимальная концентрация озона — 8 частей на миллион частей воздуха — находится на высоте 20 — 25 км.

Основное значение озонового экрана состоит в том, что он защищает живые организмы от жесткого ультрафиолетового излучения. Озоновый экран поглощает ультрафиолетовые лучи с длиной волны около 290 нм и менее, поэтому до земной поверхности доходят ультрафиолетовые лучи, полезные для высших животных и человека и губительные для микроорганизмов. Разрушение озонового слоя, замеченное в начале 1980-х гг. объясняют применением фреонов в холодильных установках и выбросом в атмосферу аэрозолей, применяемых в быту. Выбросы фреонов в мире тогда достигали 1,4 млн. т в год, а вклад отдельных стран в загрязнение атмосферы фреонами составлял: 35% — США, по 10% — Япония и Россия, 40% — страны ЕЭС, 5% — остальные страны. Согласованные меры позволили сократить поступление фреонов в атмосферу. Разрушительное воздействие на озоновый слой оказывают полеты сверхзвуковых самолетов и космических аппаратов.

Атмосфера защищает Землю от многочисленных метеоритов. Ежесекундно в атмосферу попадает до 200 млн. метеоритов, доступных для наблюдения невооруженным глазом, но они сгорают в атмосфере. Замедляют свое движение в атмосфере мелкие частицы космической пыли. Ежесуточно на Землю опускается около 1018 мелких метеоритов. Это приводит к увеличению массы Земли на 1 тыс. т. в год. Атмосфера является теплоизоляционным фильтром. Без атмосферы перепад температур на Земле в сутки достигал бы 200’С (от 100’С днем до — 100’С ночью).

1.1 Экологические функции атмосферы

Атмосфера является одним из необходимых условий возникновения и существования жизни на Земле и выполняет следующие защитные экологические функции:

1. Терморегулирующие — предохраняет Землю от резких колебаний температуры, способствует перераспределению тепла у поверхности, участвует в формировании климата.

2. Жизнеобеспечивающие — участвует в обмене и круговороте веществ в биосфере благодаря наличию жизненно важных элементов (кислород, углерод, азот).

3. Защитные — защищает живые организмы от губительных УФ, рентгеновских и космических лучей.

Атмосфера обладает способностью к самоочищению. Оно происходит при вымывании аэрозолей из атмосферы осадками, турбулентном перемешивании приземного слоя воздуха, отложении загрязнений на поверхности земли и т.д. Однако в современных условиях возможности природных систем атмосферы серьезно подорваны, и атмосферный воздух уже не в полной мере выполняет свои защитные, терморегулирующие и жизнеобеспечивающие экологические функции.

Под загрязнением атмосферного воздуха понимается любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем.

По происхождению загрязнения делятся на естественные (вызванные природными процессами) и антропогенные (связанные с выбросами загрязняющих веществ в процессе деятельности человека).

Классификация выбросов вредных веществ в атмосферу по агрегатному состоянию:

· газообразные (SO2, NO, CO2, углеводороды и др.);

· жидкие (кислоты, щелочи, растворы солей);

· твердые (сажа, органическая и неорганическая пыль, смолистые вещества, свинец и его соединения и др.).

Глава 2. Основные загрязнители атмосферного воздуха

Основными загрязнителями атмосферного воздуха, образующимися как в процессе хозяйственной деятельности человека, так и в результате природных процессов, являются диоксид серы SO2, диоксид углерода CO2, оксиды азота NOx, твердые частицы — аэрозоли. Их доля составляет 98 % в общем объеме выбросов вредных веществ. Помимо этих основных загрязнителей, в атмосфере наблюдается еще более 70 наименований вредных веществ: формальдегид, фенол, бензол, соединения свинца и других тяжелых металлов, аммиак, сероуглерод и др.

2.1 Экологические последствия загрязнения атмосферы

К важнейшим экологическим последствиям глобального загрязнения атмосферы относятся:

· возможное потепление климата (парниковый эффект);

· нарушение озонового слоя;

· выпадение кислотных дождей;

Парниковый эффект — это повышение температуры нижних слоев атмосферы Земли по сравнению с эффективной температурой, т.е. температурой теплового излучения планеты, наблюдаемого из космоса.

Наблюдаемое в настоящее время изменение климата, которое выражается в постепенном повышении среднегодовой температуры, начиная со второй половины ХХ века, большинство ученых связывают с накоплением в атмосфере так называемых парниковых газов: СО2, СН4, хлорфторуглеродов (фреонов), озона, оксидов азота и др. Парниковые газы атмосферы, и в первую очередь СО2, пропускают внутрь большую часть солнечного коротковолнового излучения (л = 0,4-1,5 мкм), но препятствуют длинноволновому излучению с поверхности Земли (л = 7,8-28 мкм).

Расчеты показывают, что в 2005 г. среднегодовая температура на 1,3 °C выше, чем в 1950-1980 гг. а к 2100 г. будет на 2-4 °C выше. Экологические последствия такого потепления могут быть катастрофическими. В результате таяния полярных льдов, горных ледников уровень Мирового океана может повыситься на 0,5-2,0 м к концу XXI века, а это приведет к затоплению приморских равнин более чем в 30 странах, заболачиванию обширных территорий, нарушению климатического равновесия.

С другой точки зрения, образующееся в результате потепления количество осадков, влага аккумулируются в полярных широтах, в результате уровень Мирового океана должен снижаться. Баланс полярного оледенения нарушится, если потепление превысит 5 °C.

В декабре 1997 г. на встрече в Киото (Япония), посвященной глобальному изменению климата, делегатами из более чем 160 стран была принята конвенция, обязывающая развитые страны сократить выбросы СО2. Киотский протокол обязывает 38 индустриально развитых стран сократить к 2008-2012 г.г. выбросы СО2 на 5 % от уровня 1990 г.:

Европейский союз должен сократить выбросы СО2 и других тепличных газов на 8 %, США — на 7%, Япония — на 6 %.

Протокол предусматривает систему квот на выбросы тепличных газов. Суть его заключается в том, что каждая из стран (пока это относится только к тридцати восьми странам, которые взяли на себя обязательства сократить выбросы), получает разрешение на выброс определенного количества тепличных газов. При этом предполагается, что какие-то страны или компании превысят квоту выбросов. В таких случаях эти страны или компании смогут купить право на дополнительные выбросы у тех стран или компаний, выбросы которых меньше выделенной квоты. Таким образом, предполагается, что главная цель — сокращение выбросов тепличных газов в следующие 15 лет на 5 % будет выполнена.

В качестве других причин, вызывающих потепление климата, ученые называют непостоянство солнечной активности, изменение магнитного поля Земли и атмосферного электрического поля.

Нарушение озонового слоя

Снижение концентрации озона ослабляет способность атмосферы защищать все живое на Земле от жесткого УФ-излучения. Растения под влиянием сильного УФ-излучения теряют способность к фотосинтезу, наблюдается увеличение заболевания раком кожи у людей, снижение иммунитета.

Под «озоновой дырой» понимается значительное пространство в озоновом слое атмосферы с заметно пониженным (до 50 %) содержанием озона. Первая «озоновая дыра» была обнаружена над Антарктидой в начале 80-ых гг. ХХ века. С тех пор результаты измерений подтверждают уменьшение озонового слоя на всей планете. Предполагают, что это явление имеет антропогенное происхождение и связано с повышением содержания хлорфторуглеродов (ХФУ) или фреонов в атмосфере. Фреоны широко применяются в промышленности и в быту в качестве аэрозолей, хладоагентов, растворителей.

Фреоны — это высокостабильные соединения. Время жизни некоторых фреонов составляет 70-100 лет. Они не поглощают солнечное излучение с большой длиной волны и не могут подвергнуться его воздействию в нижних слоях атмосферы. Но, поднимаясь в верхние слои атмосферы, фреоны преодолевают защитный слой. Коротковолновое излучение высвобождает из них атомы свободного хлора. Атомы хлора затем вступают в реакцию с озоном:

CFCl3 + hн > CFCl2 + Cl,

Cl + O3 > ClO + O2,

ClO + O > Cl + O2.

Таким образом, разложение ХФУ солнечным излучением создает цепную реакцию, согласно которой 1 атом хлора способен разрушить до 100000 молекул озона.

Разрушать озон способны и другие химические вещества, например, четыреххлористый углерод CCl4 и оксид азота N2O:

О3 + NO> NO2 + О2,

N2O + O3 = 2NO + O2.

Следует отметить, что некоторые ученые настаивают на естественном происхождении озоновых дыр.

Кислотные дожди образуются в результате промышленных выбросов в атмосферу диоксида серы и оксидов азота, которые, соединяясь с атмосферной влагой, образуют серную и азотную кислоты. Чистая дождевая вода имеет слабокислую реакцию рН = 5,6, так как в ней легко растворяется СО2 с образованием слабой угольной кислоты Н2СО3. Кислотные осадки имеют рН = 3-5, максимальная зарегистрированная кислотность в Западной Европе — рН = 2,3.

Оксиды серы поступают в воздух

40 % от естественных источников (вулканическая деятельность, продукты жизнедеятельности микроорганизмов) и

60 % — от антропогенных (продукт сжигания ископаемых видов топлива, содержащих серу, на тепловых электростанциях, в промышленности, при работе автотранспорта). Естественными источниками соединений азота являются грозовые разряды, почвенная эмиссия, горение биомассы (63 %), антропогенными — выбросы автотранспорта, промышленности, тепловых электростанций (37 %).

Основные реакции в атмосфере:

2SO2 + O2 > 2SO3

SO3 + H2O > H2SO4

2NO + O2 > 2NO2

4NO2 + 2H2O + O2 > 4HNO3

Опасность представляют не сами кислотные осадки, а протекающие под их влиянием процессы. Наибольшую опасность кислотные осадки представляют при их попадании в водоемы и почвы, что приводит к уменьшению рН среды. От значения рН зависит растворимость алюминия и тяжелых металлов, токсичных для живых организмов. При изменении рН меняется структура почвы, снижается ее плодородие.

Глава 3. Средства защиты атмосферы

Для защиты атмосферы от негативного антропогенного воздействия используются следующие основные меры.

1. Экологизация технологических процессов:

1.1. создание замкнутых технологических циклов, малоотходных технологий, исключающих попадание в атмосферу вредных веществ;

1.2. уменьшение загрязнения от тепловых установок: централизованное теплоснабжение, предварительная очистка топлива от соединений серы, использование альтернативных источников энергии, переход на топливо повышенного качества (с угля на природный газ);

1.3. уменьшение загрязнения от автотранспорта: использование электротранспорта, очистка выхлопных газов, использование каталитических нейтрализаторов для дожигания топлива, разработка водородного транспорта, перевод транспортных потоков за город.

2. Очистка технологических газовых выбросов от вредных примесей.

3. Рассеивание газовых выбросов в атмосфере. Рассеивание осуществляется с помощью высоких дымовых труб (высотой более 300 м). Это временное, вынужденное мероприятие, которое осуществляется вследствие того, что существующие очистные сооружения не обеспечивают полной очистки выбросов от вредных веществ.

4. Устройство санитарно-защитных зон, архитектурно-планировочные решения. атмосферный воздух выброс аэрозоль

Санитарно-защитная зона (СЗЗ) — это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширина СЗЗ устанавливается в зависимости от класса производства, степени вредности и количества выделенных в атмосферу веществ (50-1000 м).

Глава 4. Оборудования для очистки выбросов


4.1 Устройства для очистки технологических выбросов в атмосферу от аэрозолей

Сухие пылеуловители (циклоны)

Сухие пылеуловители предназначены для грубой механической очистки от крупной и тяжелой пыли. Принцип работы — оседание частиц под действием центробежной силы и силы тяжести. Широкое распространение получили циклоны различных видов: одиночные, групповые, батарейные.

На схеме изображена упрощенная конструкция одиночного циклона. Пылегазовый поток вводится в циклон через входной патрубок 2, закручивается и совершает вращательно-поступательное движение вдоль корпуса 1. Частицы пыли отбрасываются под действием центробежных сил к стенке корпуса, а затем под действие силы тяжести собираются в пылевой бункер 4, откуда периодически удаляются. Газ, освободившись от пыли, разворачивается на 180є и выходит из циклона через трубу 3.

Мокрые пылеуловители (скрубберы)

Мокрые пылеуловители характеризуются высокой эффективностью очистки от мелкодисперсной пыли размером до 2 мкм. Работают по принципу осаждения частиц пыли на поверхность капель под действием сил инерции или броуновского движения.

Запыленный газовый поток по патрубку 1 направляется на зеркало жидкости 2, на котором осаждаются наиболее крупные частицы пыли. Затем газ поднимается навстречу потоку капель жидкости, подаваемой через форсунки, где происходит очистка от мелких частиц пыли.

Предназначены для тонкой очистки газов за счет осаждения частиц пыли (до 0,05 мкм) на поверхности пористых фильтрующих перегородок. По типу фильтрующей загрузки различают тканевые фильтры (ткань, войлок, губчатая резина) и зернистые. Выбор фильтрующего материала определяется требованиями к очистке и условиями работы: степень очистки, температура, агрессивность газов, влажность, количество и размер пыли и т.д.

Электрофильтры — эффективный способ очистки от взвешенных частиц пыли (0,01 мкм), от масляного тумана. Принцип действия основан на ионизации и осаждении частиц в электрическом поле. У поверхности коронирующего электрода происходит ионизация пылегазового потока. Приобретая отрицательный заряд, частицы пыли движутся к осадительному электроду, имеющему знак, противоположный заряду коронирующего электрода. По мере накопления на электродах частицы пыли падают под действием силы тяжести в сборник пыли или удаляются встряхиванием.

4.2 Способы очистки от газо- и парообразных примесей

1. Очистка от примесей путем каталитического превращения. С помощью этого метода превращают токсичные компоненты промышленных выбросов в безвредные или менее вредные вещества путем введения в систему катализаторов (Pt, Pd, Vd):

· каталитическое дожигание СО до СО2;

· восстановление NО до N2.

2. Абсорбционный метод основан на поглощении вредных газообразных примесей жидким поглотителем (абсорбентом). В качестве абсорбента, например, используют воду для улавливания таких газов как NH3, HF, HCl.

3. Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов — твердых тел с ультрамикроскопической структурой (активированный уголь, цеолиты, Al2O3)

Глава 5. Охрана атмосферного воздуха

Атмосферный воздух является одним из основных жизненно важных элементов окружающей среды.

Закон «О6 охране атмосферного воздуха» всесторонне охватывает проблему. Он обобщил требования, выработанные в предшествующие годы и оправдавшие себя на практике. Например, введение правил о запрещении ввода в действие любых производственных объектов (вновь созданных или реконструированных), если они в процессе эксплуатации станут источниками загрязнений или иных отрицательных воздействий на атмосферный воздух.

Получили дальнейшее развитие правила о нормировании предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе.

Государственным санитарным законодательством только для атмосферного воздуха были установлены ПДК для большинства химических веществ при изолированном действии и для их комбинаций.

Гигиенические нормативы — это государственное требование к руководителям предприятий. За их выполнением должны следить органы государственного санитарного надзора Министерства здравоохранения и Государственный комитет по экологии.

Большое значение для санитарной охраны атмосферного воздуха имеет выявление новых источников загрязнения воздушной среды, учет проектируемых, строящихся и реконструируемых объектов, загрязняющих атмосферу, контроль за разработкой и реализацией генеральных планов городов, поселков и промышленных узлов в части размещения промышленных предприятий и санитарно-защитных зон.

В Законе «Об охране атмосферного воздуха» предусматриваются требования об установлении нормативов предельно допустимых выбросов загрязняющих веществ в атмосферу. Такие нормативы устанавливаются для каждого стационарного источника загрязнения, для каждой модели транспортных и других передвижных средств, и установок. Они определяются с таким расчетом, чтобы совокупные вредные выбросы от всех источников загрязнения в данной местности не превышали нормативов ПДК загрязняющих веществ в воздухе. Предельно допустимые выбросы устанавливаются только с учетом предельно допустимых концентраций.

Очень важны требования Закона, относящиеся к применению средств защиты растений, минеральных удобрений и других препаратов. Все законодательные меры составляют систему профилактического характера, направленную на предупреждение загрязнения воздушного бассейна.

Закон предусматривает не только контроль за выполнением его требований, но и ответственность за их нарушение. Специальная статья определяет роль общественных организаций и граждан в осуществлении мероприятий по охране воздушной среды, обязывает их активно содействовать государственным органам в этих вопросах, так как только широкое участие общественности позволит реализовать положения этого закона. Так, в нем сказано, что государство придает большое значение сохранению благоприятного состояния атмосферного воздуха, его восстановлению и улучшению для обеспечения наилучших условий жизни людей — их труда, быта, отдыха и охраны здоровья.

Предприятия или их отдельные здания и сооружения, технологические процессы которых являются источником выделения в атмосферный воздух вредных и неприятно пахнущих веществ, отделяют от жилой застройки санитарно-защитными зонами. Размер этих зон до границы жилой застройки устанавливают:

а) для предприятий с технологическими процессами, являющимися источниками загрязнения атмосферного воздуха вредными и неприятно пахнущими веществами, — непосредственно от источников загрязнения атмосферы сосредоточенными (через трубы, шахты) или рассредоточенными (через фонари зданий и др.) выбросами, а также от мест загрузки сырья или открытых складов;

б) для тепловых электрических станций, производственных и отопительных котельных — от дымовых труб.

Санитарно-защитная зона для предприятий и объектов может быть увеличена при необходимости и надлежащем обосновании не более чем в 3 раза в зависимости от следующих причин:

а) эффективности предусмотренных или возможных для осуществления методов очистки выбросов в атмосферу;

б) отсутствия способов очистки выбросов;

в) размещения жилой застройки, при необходимости с подветренной стороны по отношению к предприятию в зоне возможного загрязнения атмосферы;

г) розы ветров и других неблагоприятных местных условий (например, частые штили и туманы);

д) строительства новых, еще недостаточно изученных вредных в санитарном отношении производств.

Размеры санитарно-защитных зон для отдельных групп или комплексов крупных предприятий химической, нефтеперерабатывающей, металлургической, машиностроительной и других отраслей промышленности, а также тепловых электрических станций с выбросами, создающими большие концентрации различных вредных веществ в атмосферном воздухе и оказывающими особо неблагоприятное влияние на здоровье и санитарно-гигиенические условия жизни населения, устанавливают в каждом конкретном случае по совместному решению Минздрава и Госстроя России.

Размеры санитарно-защитных зон для предприятий, зданий и сооружений, где осуществляются работы с применением радиоактивных веществ, должны соответствовать санитарным правилам работы с радиоактивными веществами и источниками ионизирующих излучений.

Размер санитарно-защитных зон для расчета рассеивания в атмосфере вредных веществ определяют с учетом суммарного загрязнения наружного воздуха как технологическими и вентиляционными выбросами, так и существующими (фоновыми) загрязнениями. Величину фоновых загрязнений атмосферного воздуха в районе предполагаемого строительства или реконструкции предприятия устанавливают местные органы санитарно-эпидемиологической и гидрометеорологической служб и представляют свои данные проектным организациям для расчета санитарно-защитных зон.

Для повышения эффективности санитарно-защитных зон на их территории высаживают древесно-кустарниковую и травянистую растительность, снижающую концентрацию промышленной пыли и газов. В санитарно-защитных зонах предприятий, интенсивно загрязняющих атмосферный воздух вредными для растительности газами, следует выращивать наиболее газоустойчивые деревья, кустарники и травы с учетом степени агрессивности и концентрации промышленных выбросов. Особо вредны для растительности выбросы предприятий химической промышленности (сернистый и серный ангидрид, сероводород, серная, азотная, фтористая и бромистая кислоты, хлор, фтор, аммиак и др.), черной и цветной металлургии, угольной и теплоэнергетической промышленности.

Заключение

Какие же факты приводят к ухудшению состояния одной из важнейших составляющих атмосферы. Человек загрязняет атмосферу уже тысячелетиями, однако последствия употребления огня, которым он пользовался весь этот период, были незначительны. Приходилось мириться с тем, что дым мешал дыханию и что сажа ложилась черным покровом на потолке и стенах жилища. Получаемое тепло было для человека важнее, чем чистый воздух и незаконченные стены пещеры. Это начальное загрязнение воздуха не представляло проблемы, ибо люди обитали тогда небольшими группами, занимая неизмеримо обширную нетронутую природную среду. И даже значительное сосредоточение людей на сравнительно небольшой территории, как это было в классической древности, не сопровождалось еще серьезными последствиями.

Так было вплоть до начала девятнадцатого века. Лишь за последние сто лет развитие промышленности «одарило» нас такими производственными процессами, последствия которых вначале человек еще не мог себе представить. Возникли города-миллионеры, рост которых остановить нельзя. Все это результат великих изобретений и завоеваний человека.

В основном существуют три основных источника загрязнения атмосферы: промышленность, бытовые котельные, транспорт. Доля каждого из этих источников в общем загрязнении воздуха сильно различается в зависимости от места.

Сейчас общепризнанно, что наиболее сильно загрязняет воздух промышленное производство. Источники загрязнений — теплоэлектростанции, которые вместе с дымом выбрасывают в воздух сернистый и углекислый газ; металлургические предприятия, особенно цветной металлургии, которые выбрасывают в воздух оксиды азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и мышьяка; химические и цементные заводы. Вредные газы попадают в воздух в результате сжигания топлива для нужд промышленности, отопления жилищ, работы транспорта, сжигания и переработки бытовых и промышленных отходов.

Атмосферные загрязнители разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу сернистый газ окисляется до серного ангидрида, который взаимодействует с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония.

Подобным образом, в результате химических, фотохимических, физико-химических реакций между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива.

Охрана атмосферного воздуха имеет огромное значение, поскольку именно он зачастую является источником множества экологических противоречий. Наиболее остро они возникают в крупных городах с высокой концентрацией промышленных предприятий, транспорта, населения. Загрязнение атмосферного воздуха таких городов имеет особенно высокий уровень. Обычные загрязнители воздуха городов — пыль, сернистый газ, окись углерода, двуокись азота, сероводород и др.

Список использованной литературы

1. Балацкий О.Ф. Л.Г.Мельник, А.Ф.Яковлев «Экономика и качество окружающей природной среды» Гидрометеоиздат, 2004

2. Защита атмосферы от промышленных загрязнений. / Под ред. С. Калверта и Г. Инглунда. — М. «Металлургия», 1991

3. Снакин В.В. Экологи и охрана природы: Словарь-справочник. — М. AKADEMIA, 2000

4. Человек и среда его обитания. Хрестоматия. Под ред. Г.В.Лисичкина, Н.Н.Чернова. М. Мир, 2003

Размещено на Allbest.ru

Защита атмосферы

Описание: Защита атмосферы Атмосферный воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья. Важное значение для рассеивания примесей имеет ветер его скорость направление и продолжительность. Если дуют так называемые опасные ветры скорость ветра невелика и не превышает 2 5 м сек концентрация примесей для низких источников загрязнений высота труб до 25 м а они являются преобладающими в приземном слое примесей на 3070 больше чем при больших скоростях ветра. Для нашего края характерны опасные ветры которые.

Дата добавления: 2015-08-27

Размер файла: 247.2 KB

Работу скачали: 8 чел.

Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

Лекция 4. Защита атмосферы

Атмосферный воздух должен иметь определенную чистоту и любое отклонение от нормы опасно для здоровья. Атмосферный воздух выполняет и сложную защитную экологическую функцию, предохраняя Землю от холодного космоса и потока Солнечного излучения. В атмосфере идут глобальные метеорологические процессы, формируется климат и погода, задерживается масса метеоритов.

Атмосфера обладает способностью к самоочищению. Оно происходит при выбывании аэрозолей из атмосферы осадками, турбулентном перемешивании приземного слоя воздуха, отложении загрязненных веществ на поверхности земли… В современных условиях возможности природных систем самоочищения атмосферы сильно подорваны, атмосфера не в полной мере выполняет свои защитные, терморегулирующие и жизнеобеспечивающие экологические функции.

Под загрязнением атмосферы понимают любое изменение его состава и свойств, которое оказывает негативное воздействие на здоровье человека и животных, состояние растений и экосистем.

Загрязнение атмосферы бывает:

Естественным – вызванное природными процессами (вулканическая деятельность, выветривание горных пород, ветровая эрозия, дым от лесных и степных пожаров…)

Антропогенным – связанное с выбросами различных загрязняющих веществ в процессе деятельности человека.

В зависимости от масштабов распространения выделяют: местное, региональное и глобальное загрязнение.

По агрегатному состоянию выбросы вредных веществ в атмосферу делят на: газообразные (оксиды серы, углерода, азота, углеводороды), жидкие (кислоты, щелочи, растворы солей), твердые (канцерогенные вещества, свинец и его соединения, органическая и неорганическая пыль, сажа, смолистые вещества)

Наиболее опасное загрязнение атмосферы – радиоактивное. Сейчас оно обусловлено в основном глобально распределенными долгоживущими радиоактивными изотопами – продуктами испытания ядерного оружия, в приземный слой атмосферы выбрасываются радиоактивные вещества с действующих АЭС.

Основной вклад в антропогенное загрязнение воздуха вносят: теплоэнергетика(тепловые и атомные электростанции, промышленные и городские котельные), предприятия черной металлургии, нефтедобычи, нефтехимии, автотранспорт, предприятия цветной металлургии, производство стройматериалов.

В атмосферном воздухе, насыщенном различными примесями, происходят химические реакции, которые приводят к образованию новых веществ, часто более опасных, чем исходные. Это так называемые вторичные загрязнители. Например, диоксид серы SO2 реагирует с кислородом с образованием триоксида серы SО3 а поэтому оба оксида всегда присутствуют вместе. Дальнейшие реакции с водой и другими веществами в атмосфере могут перевести их в сульфаты или серную кислоту. Вторичные загрязнители главным образом ответственны за кислотные дожди. Так, под влиянием солнечной радиации происходят сложные реакции превращения газов в более тяжелые твердые частицы, которые оседают в нижние слои атмосферы и в конечном итоге вместе с осадками выпадают на землю.

Таблица Вещества, загрязняющие воздух, выбрасываемые природными и искусственными источниками

Анаэробный биологический распад

К резкому возрастанию концентрации вредных веществ в приземном слое атмосферы приводят температурные инверсии воздуха. При инверсии температура воздуха повышается с высотой, так как нижние слои воздуха в результате охлаждения земной поверхности имеют более низкую температуру. Установлено, что при инверсии уровень концентрации примесей в приземном слое на 10-60% больше, чем в ее отсутствие.

Важное значение для рассеивания примесей имеет ветер, его скорость, направление и продолжительность. Если дуют так называемые опасные ветры (скорость ветра невелика и не превышает 2 — 5 м/сек), концентрация примесей для низких источников загрязнений (высота труб до 25 м), а они являются преобладающими, в приземном слое примесей на 30-70% больше, чем при больших скоростях ветра.

Большое влияние на уровень загрязнения оказывают рельеф и связанное с ним движение атмосферного воздуха. В подветренной части города могут возникать зоны завихрения. Такая циркуляция воздуха нередко способствует повышению концентрации примесей.

Таким образом, загрязнение воздуха вредными примесями зависит от двух основных факторов- от поступления выбросов в атмосферу (их количество, состав веществ, изменение во времени) и от дальнейшего переноса загрязнителей в ней. Большое значение имеет повторяемость ветров разных направлений, которую изображают в виде розы ветров. Установлено, что в Ставропольском крае в холодное полугодие преобладают восточные ветры, а в теплое — юго-западные. В течение всего года в западной части края преобладают ветры со скоростью 5,0 -5,5 м/сек, в восточной -до 4 м/сек. В предгорьях скорость ветра уменьшается до 2 — 3 м/сек. Безветренные дни бывают редко. Для нашего края характерны «опасные» ветры, которые загрязняющие вещества рассеивают слабо и оставляют на месте.

1. Защита атмосферы от промышленных выбросов

Охрана и защита атмосферы включает комплекс технических, административных и экономических мер, прямо или косвенно направленных на прекращение или по крайней мере уменьшение возрастающего загрязнение атмосферы, связанного с деятельностью людей. При этом защита не может быть эффективной при односторонних или половинчатых мерах, направленных только против конкретных источников загрязнения. Необходимо комплексно подходить к определению причин загрязнения атмосферы, вкладу отдельных источников и выявлению различных возможностей ограничения выбросов загрязняющих веществ.

В зависимости от расстояния распространения загрязнений в воздухе от их источников соответствующие мероприятия по охране атмосферного воздуха могут иметь локальные, региональное, государственное, межгосударственное значение. В настоящее время практически все государства имеют соответствующие законодательные акты, определяющие основу для необходимых нормативных положений в области охраны окружающей среды или целенаправленно в области борьбы с загрязнением воздуха. В некоторых странах имеются законы, действующие на уровне отдельных провинциальных административных единиц.

Для защиты воздушного бассейна от негативного антропогенного воздействия в виде загрязнения его вредными веществами используют следующие меры:

  1. Экологизация технологических процессов.

Наиболее радикальная мера – создание замкнутых технологических циклов, безотходных и малоотходных технологий, исключающих образование, а следовательно и выброс вредных веществ.

  1. Очистка газовых выбросов от вредных примесей.

Для нетоксичных аэрозолей и паро- и газообразных примесей используют сухие и мокрые пылеуловители, фильтры и электрофильтры, а так же комбинированные методы очистки. Для очистки от токсичных примесей применяется каталитическое окисление, абсорбция и адсорбция.

  1. Рассеяние газовых выбросов в атмосфере.

Используют для снижения опасных концентраций примесей до уровня соответствующего ПДК. Рассеивание осуществляется с помощью высоких дымовых труб, причем чем выше труба, тем больше рассеивающий эффект.

  1. Устройство санитарно-защитных зон, архитектурно-планировочные решения.

Санитарно-защитная зона – это полоса, отделяющая источники промышленного загрязнения от жилых или общественных зданий для защиты населения от влияния вредных факторов производства. Ширину санитарно-защитных зон устанавливают в зависимости от класса производства, степени вредности и количества выделенных в атмосферу веществ и принимают равной от 50 до 1000 м. Санитарно-защитная зона должна быть благоустроена и озелена газоустойчивыми породами деревьев и кустарников: акацией белой, тополем канадским, елью колючей, вязом лиственным. (хвоя 1 га елового леса улавливает 32 т пыли, листва букового леса – 68 т.)

Архитектурно-планировочные мероприятия включают правильное взаимное размещение источников выброса и населенных мест с учетом направления ветров, выбор под застройку промышленного предприятия ровного, возвышенного места, хорошо продуваемого ветрами, сооружение автомобильных дорог в обход населенных пунктов.

2. Принципы очистки газовых выбросов

На предприятиях повсеместно используются различные методы очистки отходящих газов от аэрозолей (пыли, золы, сажи) и токсичных газо- и парообразных примесей (NO, NO2, SO2, SO3 и др.), однако, с точки зрения будущего, аппараты пылегазоочистки по вышеуказанным причинам не имеют перспектив.

Тем не менее все методы могут быть условно разбиты на две основные группы. К первой относятся физические методы очистки газов от жидких и твердых частиц с использованием так называемого разделительного оборудования, в котором в несколько стадий под действием тех или иных сил происходит выделение этих частиц из основного газового потока и перенесение их на поверхности осадителей различных конструкций. Для удаления частиц из потока могут применяться гравитационные, инерционные, диффузионные, электростатические и другие воздействия.

Во второй группе для извлечения примесей из газа используются физико-химические методы. В зависимости от физико-химических свойств загрязняющих веществ и от условий, при которых осуществляется их отделение, наиболее часто используются процессы абсорбции, адсорбции, окисления и восстановления, а также каталитические (обычно гетерогенные) химические реакции.

Как правило, пылеулавливающие аппараты (сепараторы) подразделяются на четыре группы:

  1. сухие или механические пылеуловители, в которых частицы пыли отделяются от газа с помощью механической силы; чаще используются в качестве первой ступени перед более эффективными устройствами;
  2. мокрые, в которых частицы пыли отделяются от газа с помощью промывки той или иной жидкостью, чаще водой; существует большое разнообразие таких устройств по конструкции и принципам действия;
  3. фильтры, которые задерживают пыль при пропускании через них очищаемого газа (применяются тканевые, волокнистые, воздушные, зернистые и другие фильтры);

Защита атмосферы

электрофильтры, в которых отделение частиц из газового потока осуществляется под действием электрических сил; пригодны для сухой и мокрой очистки и обеспечивают для мелкодисперсных сред наибольшую ее эффективность.

Для очистки выбросов от аэрозолей в настоящее время применяют различные типы устройств в зависимости от степени запыленности воздуха, размеров твердых частиц и требуемого уровня очистки.

Сухие пылеуловители (циклоны, пылеосадительные камеры) предназначены для грубой механической очистки выбросов от крупной и тяжелой пыли. Принцип работы – оседание частиц под действием центробежных сил и сил тяжести. Пылегазовый поток вводится в циклон через патрубок (рис.15.1), далее он совершает вращательно-поступательное движение вдоль корпуса; частицы пыли отбрасываются к стенкам циклона и затем падают вниз в сборник пыли (бункер), откуда периодически удаляются.

Рис.15.1. Схема устройства циклона: 1 корпус; 2 входной патрубок; 3 выхлопная труба; 4 сборник пыли

Для повышения эффективности работы применяют групповые (батарейные) циклоны.

Защита атмосферы

Мокрые пылеуловители (скрубберы, турбулентные, газопромыватели и др.) требуют подачи воды и работают по принципу осаждения частиц пыли на поверхность капель под действием сил инерции и броуновского движения. Наибольшее практическое применение получили скрубберы Вентури (рис.15.2.), которые обеспечивают 99% очистки от частиц размером более 2 мкм и, как все мокрые пылеуловители, незаменимы при очистке от пыли взрывоопасных и горячих газов.

Рис.15.2. Схема устройства скруббера Вентури: 1 труба Вентури; 2 скруббер-каплеуловитель

Фильтры (тканевые, зернистые) способны задерживать мелкодисперсные частицы пыли до 0,05 мкм. Особенно эффективны рукавные фильтры с тканями из синтетических волокон повышенной термостойкости (250–300 ºС) типа «сульфон-Т», фильтровальные металлические ткани (до 800 ºС), а также фильтры из тканей типа ФПП и ФПА, дающие высокую степень очистки.

Защита атмосферы

Электрофильтры – наиболее совершенный способ очистки газов от взвешенных в них частиц пыли размером до 0,01 мкм при высокой эффективности очистки газов (&9,0–99,5%). Принцип работы всех типов электрофильтров основан на ионизации пылегазового потока у поверхности коронирующих электродов. Приобретая отрицательный заряд, пылинки движутся к осадительному электроду, имеющему знак, обратный заряду коронирующего электрода. При встряхивании электродов осажденные частички пыли под действием силы тяжести падают вниз в сборник пыли (рис.15.3.). Электроды требуют большого расхода электроэнергии – это их основной недостаток.

Рис.15.3. Схема устройства трехпольного электрофильтра: 1 — корпус; 2 — электрод осадительный; 3 — электрод коронирующий; 4 — механизм встряхивания коронирующих электродов; 5 — механизм встряхивания осадительных электродов; 6 — газораспределительная решетка; 7 — сборник пыли; 8 – изолятор.

Наиболее эффективны комбинированные методы очистки от пыли. Например, отличные результаты дает очистка агломерационных газов в батарейных циклонах с последующей доочисткой в скрубберах Вентури, а также в электрофильтрах. (Защита окружающей среды. 1993).

Естественно, что газообразное вещество—загрязнитель из общего газового потока с помощью сепараторов выделить, как правило, невозможно. В этом случае используются физико-химические методы.

Способы очистки выбросов от токсичных газо- и парообразных примесей (NO, NO2, SO2 и др.) подразделяют на три основные группы: 1) поглощение примесей путем применения каталитического превращения; 2) промывка выбросов растворителями примеси (абсорбционный метод) и 3) поглощение газообразных примесей твердыми телами с ультрамикропористой структурой (адсорбционный метод).

С помощью каталитического метода токсичные компоненты промышленных выбросов превращают в вещества безвредные или менее вредные для окружающей среды путем введения в систему дополнительных веществ, называемых катализаторами. Широко применяют палладийсодержащие и ванадиевые катализаторы. С их помощью происходит каталитическое досжигание оксида углерода до диоксида и диоксида серы до оксида. Возможно также восстановление оксидов азота аммиаком до элементарного азота. Одна из разновидностей этого метода – дожигание вредных примесей с помощью газовых горелок (факельное сжигание), широко используется на нефтеперерабатывающих заводах.

Абсорбционный метод основан на поглощении вредных газообразных примесей жидким поглотителем (абсорбентом). В качестве абсорбента используют воду, растворы щелочей (соды), аммиака и др. Газообразные цианистые соединения абсорбируют, например, 5%-ным раствором железного купороса. Устройство, в котором осуществляют процесс абсорбции, называют абсорбером.

Абсорбционный метод основан на подборе такой жидкости, при прохождении через которую вредная примесь переходит в жидкую фазу абсорбента, растворяясь в нем — это физическая абсорбция. Например, физическая абсорбция применяется для очистки природных газов и газов при производстве водорода от сероводорода, диоксида углерода с использованием сульфолана, пропиленкарбоната. В тех случаях, когда абсорбенты вступают в химические реакции с очищаемым газом, например, при очистке природных газов от сероводорода, диоксида углерода, диоксида серы с помощью водных растворов слабых оснований — аммиака, анилина, ксилидина, происходит процесс так называемой химической абсорбции.

Для поглощения загрязняющих веществ из промышленных выбросов применяется разнообразное абсорбционное оборудование: безнасадочные распылительные абсорбенты, абсорбционные колонны с насадкой, пенные абсорбенты, абсорбенты с плавающей насадкой.

В качестве насадок чаще всего используются кольца Рашига, башни с колпачковыми тарелками. В некоторых случаях в качестве абсорбента применяются определенного типа скрубберы, например, мокрые центробежные.

Адсорбция — это диффузный процесс, в котором повышенная концентрация отделяемого газообразного и жидкого вещества образуется на границе раздела фаз в результате связывания этих веществ на поверхности твердого или жидкого соединения. Если между молекулами адсорбированного вещества и адсорбента не происходит никаких химических реакций, то подобный процесс относится к физической адсорбции, в отличие от хемосорбции, когда происходит перенос или объединение электронов адсорбента и адсорбата, как у химических соединений.

При физической адсорбции адсорбированное вещество можно полностью удалить при обратном процессе (десорбции), например, понизив давление или увеличив температуру. Адсорбент можно применять повторно в циклическом процессе, а отделенное вещество подвергается дальнейшей обработке или используется непосредственно по назначению. Поэтому процесс физической адсорбции, как правило, включает в себя три последовательных этапа: контактирование газа с адсорбентом, десорбцию и улавливание после регенерации. Метод физической адсорбции находит применение прежде всего там, где в процессе производственного цикла теряются с выбросами ценные продукты, например, растворители. Чаще всего в качестве адсорбентов применяются активированный уголь, силикагель, глинозем, бентонит, окись алюминия и др.

Хемосорбированное вещество вернуть в газовую форму ни повышением температуры, ни снижением давления невозможно, процесс необратим. Поскольку процессы хемосорбции идут только в тонких поверхностных слоях адсорбента, то для повышения эффективности процесса активную поверхность хемосорбента увеличивают за счет нанесения его тонкими слоями на поверхности инертного тонкодисперсного носителя.

Адсорбционное оборудование может быть весьма разнообразным в зависимости от условий эксплуатации. В простейшем случае адсорбер выполняется в виде цилиндра с сеткой на дне. На сетку насыпается слой адсорбента, через который прогоняется очищаемый газ. По мере эксплуатации адсорбера происходит постепенное послойное насыщение адсорбента с полной потерей адсорбционной способности при насыщении всего слоя, т.е. необходима замена адсорбента на свежий. Эффективность адсорбционного метода очистки может достигать 100%.

Адсорбционный метод позволяет извлекать вредные компоненты из промышленных выбросов с помощью адсорбентов – твердых тел с ультрамикропористой структурой (активированный уголь и глинозем, силикагель, цеолиты, сланцевая зола и другие вещества). Например, на АЭС широко применяется метод очистки технологических газов путем сорбции радиоактивных продуктов на угольных фильтрах – адсорбентах, которые позволяют надежно предотвратить загрязнение атмосферы при всех режимах работы АЭС («Защита окружающей среды. 1993).

Иногда загрязняющие вещества промышленных выбросов можно трансформировать с переводом в безвредное состояние с помощью реакций окисления или восстановления. Обычно при нормальных условиях реакции окисления или восстановления идут очень медленно. Поэтому для ускорения процессов либо повышаются давление или температура, либо используются процессы катализа. При этом получаемые продукты являются либо конечными, либо промежуточными и пригодными для дальнейшей переработки или становятся почти полностью удаляемыми с помощью других известных методов. В частности, с помощью катализатора диоксид серы превращают в триоксид, который удаляется затем в процессе адсорбции.

В принципе каталитическое окисление (сжигание) экономически оправдывает себя при необходимости очистки смесей, когда они либо не горючи, либо процесс горения возможен при предварительном нагреве смеси до высокой температуры (до 800°С). Применение катализаторов обеспечивает быстрое и практическое полное протекание химических процессов при низких температурах. Например, полнота прохождения химических реакций с использованием современных катализаторов достигает 90% при температуре ЗООºС и 99% — при 350-400º’С.

Каталитические методы очистки промышленных отходящих газов применяются в производстве акрилатов, лаков, красок, синтетического каучука и др. В последние годы во всем мире ведутся работы по созданию устройств на основе применения катализаторов для нейтрализации и дожигания выхлопных газов автомобилей. Каталитическое дожигание также может быть полезно при удалении запахов некоторых органических соединений в промышленных выбросах.

Катализаторы представляют собой либо металлы, либо соединения, нанесенные на инертную подложку. Чаще всего применяются платина, палладий или другие металлы платиновой группы, а также железо, никель, ванадий, медь, молибден и их сплавы.

Оборудование для каталитического окисления также достаточно разнообразно, тем не менее включая в себя три основных узла: камеру сгорания, она же смеситель, реактор, где происходят химические реакции, и теплообменник для отвода выделяемого тепла.

Рассеивание газовых примесей в атмосфере используют для снижения опасных концентраций примесей до уровня соответствующего ПДК. Как показывает опыт, в приземном слое атмосферы вблизи крупных энергетических установок (ТЭЦ, ТЭС, ГРЭС) и других предприятий концентрация вредных веществ в отходящих газах может превышать предельно допустимые нормы, несмотря на все применяемые меры по очистке газов и экологизацию технологических процессов.

Рассеивание пылегазовых выбросов осуществляют с помощью высоких дымовых труб. Чем выше труба, тем больше ее рассеивающий эффект. На ряде предприятий высота дымовых труб достигает более 300 м. Так, на медно-никелевом комбинате в г. Садбери (Канада) высота трубы 407 м. Значительную высоту (не менее 100 м) имеют вентиляционные (выбросные) трубы на АЭС для рассеивания радиоактивных выбросов. Следует признать, что рассеивание газовых примесей в атмосфере – это далеко не самое лучшее решение проблемы, связанной с загрязнением воздушного бассейна. По мнению А. Гора (1993), «применение высоких дымовых труб, хотя и помогло уменьшить локальное дымовое загрязнение, осложнило в то же время региональные проблемы выпадения кислотных дождей. Чем выше от поверхности земли происходит выброс загрязняющих газов, тем дальше от своего источника они распространяются. То, что было когда-то дымной мглой над Питтсбургом, становилось кислотным снегопадом в Лабрадоре. Примеси, досаждающие лондонцам в виде смога, губят листву в лесах Скандинавии». Рассеивание вредных веществ в атмосфере – это временное, вынужденное мероприятие, которое осуществляется вследствие того, что существующие очистные устройства не обеспечивают полной очистки выбросов от вредных веществ.

Другие похожие работы, которые могут вас заинтересовать.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *