Уравнение шредингера для стационарных состояний

Уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. Уравнение Шрёдингера для стационарных состояний

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2. определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

Общее уравнение Шредингера имеет вид:

где ? = h / ( ), m – масса частицы, Δ – оператор Лапласа Уравнение шредингера для стационарных состояний, i – мнимая единица, U (x, y, z, t ) – потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) – искомая волновая функция частицы.

Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

Оно дополняется условиями. накладываемыми на волновую функцию:

1) волновая функция должна быть конечной, однозначной и непрерывной;

2) производные Уравнение шредингера для стационарных состоянийдолжны быть непрерывны;

3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей ).

Уравнение (1) называют уравнением Шредингера, зависящим от времени.

Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний – состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

Уравнение (2) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций. вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.

Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором – о дискретном спектре.

Частица в одномерной прямоугольной «потенциальной яме»с бесконечно высокими «стенками9raquo;

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками9raquo;. Такая «яма9raquo; описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

Уравнение шредингера для стационарных состояний

где l — ширина «ямы9raquo;, а энергия отсчитывается от ее дна (рис. 2).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

Уравнение шредингера для стационарных состояний

По условию задачи (бесконечно высокие «стенки9raquo;), частица не проникает за пределы «ямы9raquo;, поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы9raquo; равна нулю. На границах «ямы9raquo; (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

Следовательно, граничные условия в данном случае имеют вид:

В пределах «ямы9raquo; (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

где k 2 = 2mE /. 2 . (4)

Общее решение дифференциального уравнения (3):

Так как по (2) Ψ (0) = 0, то В = 0. Тогда

Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ. где n – целые числа, т.е. необходимо, чтобы

Из выражений (4) и (6) следует, что:

Уравнение шредингера для стационарных состояний (n = 1, 2, 3,…), (7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками9raquo;, удовлетворяется только при собственных значениях Еп , зависящих от целого числа п. Следовательно, энергия Еп частицы в «потенциальной яме» с бесконечно высокими «стенками9raquo; принимает лишь определенные дискретные значения, т. е. квантуется.

Квантованные значения энергии Еп называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками9raquo; может находиться только на определенном энергетическом уровне Еп , или, как говорят, частица находится в квантовом состоянии п.

Подставив в (5) значение k из (6), найдем собственные функции:

Уравнение шредингера для стационарных состояний.

Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

Уравнение шредингера для стационарных состояний.

В результате интегрирования получим Уравнение шредингера для стационарных состояний, а собственные функции будут иметь вид:

Уравнение шредингера для стационарных состояний (n = 1, 2, 3,…). (8)

Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок9raquo; ямы, равная ‌9zwnj;9zwnj;9zwnj;9zwnj;9zwnj; Ψn (x )‌ 2 = Ψn (x )·9Psi;n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы9raquo;, в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

Например, для электрона при размерах ямы l = 10 –1 м (свободные электроны в металле), ΔЕn 10 -35 ·n Дж ≈ 10 –1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕn 10 –17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

Уравнение шредингера для стационарных состояний

Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками9raquo; приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками9raquo; не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме9raquo; шириной l равна Δх = l .

Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δрh / l. Такому разбросу значений импульса соответствует кинетическая энергия Еminp ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕn / Eп 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность – сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

§217. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний

Статистическое толкование волн де Бройля (см. §216) и соотношение неопределенностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у,z, t), так как именно она, или, точнее, величина || 2. определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и х+dх, у и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

Уравнение шредингера для стационарных состояний

— потенциальная функция частицы в силовом поле, в котором она движется,

(х, у, z, t) искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. §225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<9lt;с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. §216); 2) производные д /д x, д /д y, д /д z, д /д t должны быть непрерывны;

3) функция || 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

(x,t)=Acos(t-kx), или в комплексной записи

Следовательно, плоская волна де Бройля имеет вид

(учтено, что =E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только| | 2. то это (см. (217.2)) несущественно. Тогда

Уравнение шредингера для стационарных состояний

Используя взаимосвязь между энергией Е и импульсом р(Е=р2/(2m)) и подставляя выраже-

ния (217.3), получим дифференциальное уравнение

Уравнение шредингера для стационарных состояний

которое совпадает с уравнением (217.1) для случая U =0 (мы рассматривали свободную частицу).

Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р для данного случая р2/(2m)=Е-U, придем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость  от времени, иными словами, найти уравнение Шредингера для стационарных состояний — состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U(х, у,z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая — только времени, причем зависимость от времени выражается множителем е — i  t =е -i(E/h0t. так что

где Е — полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

Уравнение шредингера для стационарных состояний

откуда после деления на общий множитель e-i(E/h)t и соответствующих преобразований придем к уравнению, определяющему функцию :

Уравнение шредингера для стационарных состояний

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями  Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором — о дискретном спектре.

Уравнение Шредингера для стационарных состояний.

Уравнение Шредингера для стационарных состояний. — раздел Химия, Теория атома водорода по Бору Статистическое Толкование Волн Де Бройля И Соотношение Неопределенностей Гейз.

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y(x,y,z,t), так как именно она, или, точнее, величина , определяет вероятность пребывания частицы в момент времени t в объеме dV, т.е. в области с координатами x и x+dx, y и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением. подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики не выводится. а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид:

где , m – масса частицы, D — оператор Лапласа , I – мнимая единица, — потенциальная функция частицы в силовом поле, в котором она движется, — искомая волновая функция частицы.

Уравнение (2.10) справедливо для любой частицы (со спином, равным нулю), движущейся с малой (по сравнению со скоростью света) скоростью.

(2.10) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящем от времени. Для многих физических явлений, происходящих в микромире, уравнение (2.10) можно упростить, исключив время. Другими словами это означает найти уравнение Шредингера для стационарных состояний. Это возможно, если функция не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае уравнение Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая – только времени, причем зависимость от времени выражается множителем , так что

где Е – полная энергия частицы, постоянная в случае стационарного поля. После подстановки (2.11) в (2.10), получим

откуда после деления на общий множитель и соответствующих преобразований придем к стационарному уравнению:

В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями. Но регулярные решения имеют место не при любых значениях параметра Е. а лишь при определенном их наборе, характерном для данной задачи. Эти значения называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае получается непрерывный. во втором – дискретный спектр .

Все темы данного раздела:

Модель атома Томсона и Резерфорда
Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена (Демокрит, Эпикур, Лукреций). В средние века учение об атомах, будучи материалистическим, не смогл

Линейчатый спектр атома водорода.
Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных л

Постулаты Бора.
Первая попытка построить качественно новую – квантовую – теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором. Он поставил перед собой цель связать в единое целое эмпирические зако

Опыты Франка и Герца.
Изучая методом задерживающего потенциала столкновения электронов с атомами газов, Д. Франк и

Корпускулярно-волновой дуализм свойств вещества.
Французский ученый Луи де Бройль, осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универса

Соотношение неопределенностей.
Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания микрочастиц используются то волновые, то корпускулярные представления. Поэтому приписывать им все свойства частиц

Волновая функция и ее статистический смысл.
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, а также противоречие целого ряда

Атом водорода в квантовой механике.
Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия He+, двукратно ионизированного лития Li++ и др.) сводится к

Спин электрона. Спиновое квантовое число.
О. Штерн и В. Герлах, проводя прямые измерения магнитных моментов, обнаружили в 1922 году, что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепл

Фермионы и бозоны.
Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-мех

Распределение электронов в атоме по состояниям.
Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки чисел. Отсюда следует, что два одинаковых фермиона, входящих в одну систему

Размер, состав и заряд атомного ядра. Массовое и зарядовое числа.
Э. Резерфорд, исследуя прохождение a-частиц с энергией в несколько мегаэлектрон-вольт через тонкие пленки золота, пришел к выводу о том, что атом состоит из положительно заряженного ядра и окружающ

Дефект массы и энергия связи.
Исследования показывают, что атомные ядра являются устойчивыми образованиями. Это означает, что в ядре между нуклонами существует определенная связь. Массу ядер очень точно можно определит

Систематика элементарных частиц
Бозоны и фермионы.Все частицы (включая и неэлементарные и так называемые квазичастицы) подразделяют на бозоны и фермионы. Бозоны – это частицы с нулевым или целочисле

Античастицы
Частицы и античастицы.Существование античастиц является универсальным свойством элементарных частиц. Каждой частице соответствует своя античастица: например, электрону e-

Законы сохранения
Роль законов сохранения.Законы сохранения играют особо важную роль в физике элементарных частиц. Это обусловлено двумя обстоятельствами. 1. Они не только ограничивают посл

Изотопический спин.
Оказывается, что сильно взаимодействующие частицы (адроны), весьма близкие по своим физическим свойствам, можно разбить на группы, называемые изотопическими мультиплетами (дублеты, триплеты

Кварковая модель адронов
Кварки.Большое разнообразие адронов заставило усомниться в их «элементарности» и побудило к поиску более фундаментальных, первичных частиц, из которых они могли бы быть построены.

Уравнение шредингера для стационарных состояний

В 1926 году швейцарский физик Эрвин Шредингер записал в явном виде уравнение для волн волновой механики.

И сегодня до конца не ясно, как он нашел это уравнение.

Может быть, он рассуждал следующим образом.

Согласно гипотезе де-Бройля, каждой движущейся микрочастице должна быть сопоставлена волна.

Пусть свободной микрочастице, летящей вдоль оси x. соответствует плоская волна

Свяжем параметры волны с энергией и импульсом микрочастицы

Теперь уравнение (13.5) можно записать иначе:

Продифференцируем это выражение один раз по времени и дважды – по координате:

В случае свободного движения нерелятивистской частицы, ее энергия и импульс связаны простым соотношением:

Теперь, принимая во внимание это соотношение, легко связать уравнения (13.7) и (13.8)

Это и есть волновое уравнение Шредингера для одномерного движения свободной частицы.

В случае движения микрочастицы в силовом поле, потенциальная энергия U. полная энергия E и импульс частицы связаны таким соотношением

Объединяя в этом выражении уравнения (13.7) и (13.8), получим:

Уравнение шредингера для стационарных состояний

Это уравнение Шредингера для одномерного движения микрочастицы в силовом поле.

Для частицы, движущейся в произвольном направлении, запишем волновое уравнение в таком виде:

Это уравнение получило название нестационарное волновое уравнение Шредингера.

Здесь: Уравнение шредингера для стационарных состояний оператор Лапласа.

Уравнение шредингера для стационарных состояний

При движении микрочастицы в стационарном (неизменном во времени) силовом поле, решение уравнения Шредингера может быть представлено произведением двух множителей, один из которых является функцией только координат, а другой – только времени

Используем это решение в дифференциальном уравнении (13.10)

Сократив на общий множитель , получим уравнение Шредингера для стационарных состояний:

Это же уравнение можно представить еще и в таком виде:

1) Для одномерного движения свободной частицы (U = 0)

2) Для одномерного движения частицы в силовом поле

Уравнение шредингера для стационарных состояний

3) Нестационарное волновое уравнение

4) Стационарное волновое уравнение

Мы познакомились с различными уравнениями движения микрочастиц – с волновыми уравнениями Шредингера. Но до сих пор остается не ясным: каково содержание самой &#&36; – функции?

Рассматривая, например, акустическую волну, мы составляли волновое уравнение для давления или плотности среды. В волновом уравнении электромагнитной волны речь шла о напряженности электрического или магнитного полей…

Что же означает в уравнении Шредингера пси-функция (&#&36;)? Каков ее физический смысл?

Этот вопрос мы подробно обсудим на следующей лекции.

Толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающей движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Уравнение шредингера для стационарных состояний. т.к. именно величина Уравнение шредингера для стационарных состояний осуществляет вероятность пребывания частицы в момент времени t в объеме dV. т.е. в области с координатами x и Уравнение шредингера для стационарных состояний. y и Уравнение шредингера для стационарных состояний. z и Уравнение шредингера для стационарных состояний. Т.к. искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Шредингером.

Уравнение шредингера для стационарных состоянийШредингерЭрвин (1887–1961) – австрийский физик-теоретик, один из создателей квантовой механики. Основные работы в области статистической физики, квантовой теории, квантовой механики, общей теории относительности, биофизики. Разработал теорию движения микрочастиц – волновую механику, построил квантовую теорию возмущений – приближенный метод в квантовой механике. За создание волновой механики удостоен Нобелевской премии.

Уравнение Шредингера не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

Уравнение Шредингера в общем виде записывается так:

Уравнение шредингера для стационарных состояний

где m – масса частицы,i 2 – мнимая единица, Уравнение шредингера для стационарных состояний – оператор Лапласа Уравнение шредингера для стационарных состоянийУравнение шредингера для стационарных состояний – потенциальная энергия частицы в силовом поле, в котором она движется, &#&36; – искомая волновая функция.

Если силовое поле, в котором движется частица, потенциально, то функция U не зависит явно от времени и имеет смысл потенциальной энергии. В этом случае решение уравнения Шредингера распадается на два сомножителя, один из которых зависит только от координаты, а другой – только от времени:

Уравнение шредингера для стационарных состояний.

Здесь E – полная энергия частицы, которая в случае стационарного поля остается постоянной. Чтобы убедиться в справедливости выражения 4.4.2, подставьте его в выражение (4.4.1), и вы получитеуравнение Шредингера для стационарных состояний :

Уравнение шредингера для стационарных состояний ,

Уравнение шредингера для стационарных состояний.

Уравнение Шредингера можно записать в виде Уравнение шредингера для стационарных состояний .

В этом уравнении Уравнение шредингера для стационарных состояний – оператор Гамильтона, равный сумме операторов Уравнение шредингера для стационарных состояний. Гамильтониан является оператором энергии E .

В квантовой механике другим переменным также и динамическим сопоставляются операторы. Соответственно рассматривают операторы координат, импульса, момента импульса и т.д.

Уравнение шредингера для стационарных состояний Понятие о волновой функции Движение свободной частицы Уравнение шредингера для стационарных состояний

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *