Этапы трансляции

Этапы трансляции и их характеристика.

1.Рекогниция (распознавание) — узнавание между аминокислотами и их транспортной РНК. (образование комплекса метионил-тРНК)

АК + ТРНК аминоацил-т-РНК-синтетаза АК-ТРНК

АТФ®АМФ + ФФ МЕТИОНИЛ-ТРНК

Рекогниция происходит столько раз, сколько аминокислот входит в состав белка.

2. Инициация — начало процесса трансляции, образование инициирующего комплекса.

1этап – Диссоциация рибосомы на большую и малую субъединицы, с участием фактора инициации-3.

2этап Присоединение метионил-тРНК к малой субъединице, образует инициирующий комплекс, способный распознавать стартовый кодон с участием ФИ-2.

3этап Присоединение комплекса к мРНК в области КЭПа. Узнаванию 5'-конца способствуют САР и САР-связывающие белки. Реакцию обеспечивают ФИ-1 .

Этапы трансляции

4этап Движение комплекса по мРНК до стартового кодона. Сканирование инициирующим комплексом мРНК путём продвижения от 5' к 3'-концу до обнаружения стартового кодона АУГ антикодоном УАЦ. Данный процесс энергозависим, требует энергии АТФ .

5этап Присоединения 60S субъединицы. После обнаружения стартового кодона путём фиксации 60S единицы рибосома полностью собирается (80S), и высвобождаются белковые ФИ-1,2,3 и САР-связывающие белки. Для этого необходима ГТФ. В рибосоме выделяют Р -участок и А -участок. Р-участок (пептидильный) — в нём происходит образование пептидных связей. Это закрытая область рибосомы. Вход в неё извне запрещён. А-участок (аминоацильный). Это открытая область рибосомы — для поступления следующей аминокислоты.

Этапы трансляции

3.Элонгация (продолжение) протекает циклически в виде последовательной смены трёх
фаз:

I. Присоединение следующей аминоацил-тРНК в соответствии со смыслом следующего кодона. Для процесса требуется энергия ГТФ и ФЭ-1 (проникновение в рибосому).

II. Пептизация . Фермент пептидилтрансфераза образует пептидную связь между двумя аминокислотными остатками и одновременно разрушает сложноэфирную связь между первой аминокислотой и её тРНК. В результате идёт образование растущего пептида в Р-участке и высвобождение первой тРНК.

III. Транслокация (перемещение). При этом происходит перемещение рибосомы на один кодон в направлении 3'-конца. При этом все остальные компоненты (мРНК, тРНК) остаются на месте. Для процесса требуется энергия ГТФ и белковый ФЭ-2 . Процесс циклический, т.е. фазы чередуют друг друга. Это происходит до обнаружения стоп (нонсенс)-кодона. Он не кодирует ни одну аминокислоту. Элонгация становится невозможной. Элонгацию и инициацию обозначают как собственно трансляцию.

Этапы трансляции

4. Терминация (прекращение). Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов: UAG, UAA или UGA. Для стоп-кодонов нет соответствующих тРНК. Вместо этого к рибосоме присоединяются 2 белковых высвобождающих фактора RF (от англ, releasing factor ) или фактора терминации. Один из них с помощью пептидилтрансферазного центра катализирует гидролитическое отщепление синтезированного пептида от тРНК. Другой за счёт энергии гидролиза ГТФ вызывает диссоциацию рибосомы на субъединицы.

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. В случае нарушения авторского права напишите сюда.

Этапы трансляции

Подготовительные стадии

Трансляция

Трансляция – процесс перевода генетической информации с последовательности нуклеотидов мРНК в последовательность аминокислот в молекуле полипептида. Трансляция осуществляется согласно правилам генетического кода, который имеет следующие особенности:

2. Код – однозначный (специфичный): каждый кодон обозначает только одну аминокислоту.

3. Код – непрерывный. т. е. отсутствуют сигналы, показывающие конец одного кодона и начало следующего.

4. Код – вырожденный. т. е. одной аминокислоте может соответствовать более одного кодона. Только две аминокислоты – метионин и триптофан – имеют по одному кодону. Лейцину и серину соответствует 6 кодонов. глицину и аланину – по 4 и т. д. Если аминокислота кодируется несколькими кодонами, то в большинстве случаев они различаются по третьей букве, т. е. по нуклеотиду на 3′-конце. Таким образом, специфичность каждого кодона определяется главным образом его первыми двумя нуклеотидами.

5. Код не перекрывается. т. е. один нуклеотид не может одновременно входить в два соседних триплета.

6. Генетический код содержит триплеты, обозначающие начало и окончание синтеза белка. АУГ – инициирующий кодон (кодирует метионин). УАА, УАГ, УГА – терминирующие кодоны, которые не кодируют ни одну из известных аминокислот и сигнализируют об окончании синтеза белка.

Подготовительные стадии трансляции включают:

— присоединение аминокислот к тРНК.

Этапы трансляцииОбе стадии осуществляются с помощью фермента – аминоацил-тРНК-синтетазы (АРС-азы, кодазы). Существует 20 видов таких ферментов – по числу аминокислот. В каждом случае фермент имеет два центра узнавания – для аминокислоты и тРНК (рис. 35).

Рис. 35. Связывание аминокислоты (фенилаланина – Phe) с тРНК

В активном центре фермента аминокислота связывается с АТФ, лишь затем переносится на тРНК. Образование макроэргической связи между аминокислотой и тРНК называется аминоацилированием, а образовавшийся комплекс – аминоацил-тРНК (аа-тРНК). Каждая тРНК может переносить к месту синтеза белка только одну из аминокислот. Для большей части аминокислот имеется несколько тРНК, которые называются изоакцепторными и обозначаются соответственно тРНК1 Phe. тРНК2 Phe и т. д.

Собственно процесс трансляции включает три фазы:

Инициация трансляции – начало синтеза полипептидной цепи, заключается в сборке белоксинтезирующей системы (активной рибосомы).

Функциональные центры рибосом.

Каждая рибосома состоит из двух субчастиц. большой и малой. Форма субчастиц, их контактирующих поверхностей, достаточно сложная (рис. 36). На контактирующих поверхностях большой и малой субчастиц в небольших углублениях находятся центры связывания всех компонентов белоксинтезирующей системы (мРНК, пептидил-тРНК, очередная аминоацил-тРНК), а также центры, катализирующие образование пептидной связи и постепенное перемещение рибосомы относительно мРНК.

Рис. 36. Модель рибосомы Escherichia coli (Васильев В.Д. Институт белка РАН):

слева – перекрывающаяся проекция: малая (30S) субчастица обращена к зрителю
и закрывает собой часть большой (50S) субчастицы; справа – боковая проекция:
к зрителю обращен боковой палочкообразный выступ большой (50S) субчастицы,
а малая (30S) субчастица расположена вверху

Функциональные центры рибосом (рис. 37):

1. Центр связывания мРНК (М-центр). Образован участком 18S-рРНК, который комплементарен на протяжении 5-9 нуклеотидов 5′-нетранслируемому фрагменту мРНК. Расположен на малой субчастице рибосомы.

2. Пептидильный центр (П-центр). В начале процесса трансляции с пептидильным центром связывается инициирующая аа-тРНК. На последующих стадиях трансляции в пептидильном центре находится пептидил-тРНК, содержащая уже синтезированную часть пептидной цепи.

3. Аминоацильный центр (А-центр) – место связывания очередной аа-тРНК. Аминоацильный и пептидильный центры расположены как на большой, так и на малой субчастицах рибосомы.

4. Каталитический (пептидилтрансферазный) центр (К-центр). Катализирует перенос пептидила из состава пептидил-тРНК на поступившую в амино-ацильный центр очередную аа-тРНК. Расположен на большой субчастице рибосомы.

Инициация трансляции у прокариот начинается со связывания мРНК в области 5 — нетранслируемого участка с малой субъединицей рибосомы. Инициирующий кодон (АУГ) оказывается на уровне пептидильного центра будущей рибосомы. Далее за счет комплементарного взаимодействия с этим кодоном происходит связывание инициирующей аа-тРНК. У прокариот инициирующей аа-тРНК является формилметиониновая аа-тРНК – fМet-тРНКi fMet
(рис. 38 ). Блокирование аминогруппы метионина формильным остатком препятствует включению такой аминокислоты во внутренние участки цепи, но в то же время позволяет fМet-тРНКi fMet связываться с инициирующим кодоном мРНК (АУГ). Инициирующая аа-тРНК, взаимодействуя с пептидильным центром большой субъединицы, вызывает связывание последней.

У прокариот инициация осуществляется при участии трех специфических белков – факторов инициации (IF – I nitiation F actors). IF-3, присоединяясь к малой субчастице рибосомы, препятствует преждевременному связыванию большой субчастицы и, с другой стороны, способствует связыванию мРНК. IF-2 участвует в связывании инициирующей аа-тРНК. Вероятно, этот фактор образует комплекс с аа-тРНК еще вне рибосомы, причем в состав комплекса входит ГТФ. В результате образуется так называемый инициаторный комплекс. состоящий из малой субчастицы рибосомы, мРНК, инициаторной аминоацил-тРНК и факторов инициации (рис. 39). Большая субчастица при ассоциации с малой субчастицей вызывает гидролиз ГТФ (до ГДФ и Фн ) и одновременно вытесняет все факторы инициации, включая IF-3. В итоге инициации трансляции образуется полная 70S (у прокариот) рибосома с пептидильнымучастком, занятым инициаторной формилметионил-тРНК, и со свободным аминоацильнымучастком.

Этапы трансляции

Рис. 39. Инициация трансляции у прокариот

Элонгация трансляции – основной и самый продолжительный этап белкового синтеза, в ходе которого происходит удлинение полипептидной цепи за счет последовательного присоединения аминокислот. Начинается с момента образования первой пептидной связи и заканчивается после включения в полипептидную цепь последней аминокислоты.

Элонгация у бактерий осуществляется при участии трех белковых факторов (EF-Tu, EF-Ts, EF-G) и имеет циклический характер.

Цикл элонгации включает 3 стадии:

1. Связывание аа-тРНК с аминоацильным центром рибосомы. На этой стадии со свободным А-центром рибосомы связывается очередная аа-тРНК – та, чей антикодон комплементарен кодону мРНК, находящемуся в А-центре. Поступив в А-центр, аа-тРНК закрепляется в нем в комплексе с белковым фактором EF-Tu (EF – E longation F actor) и ГТФ. При участии фактора EF-Тu осуществляется гидролиз ГТФ до ГДФ и Фн. а выделяющаяся энергия расходуется на сближение двух аминокислотных остатков. Комплекс EF-Tu·ГДФ при этом покидает рибосому и регенерируется с участием фактора EF-Ts, так что фактор EF-Tu вновь оказывается связанным с молекулой ГТФ (рис. 40).

Рис. 40. Этап элонгации в синтезе белка у прокариот

2. Образование пептидной связи . В рибосоме после первой стадии цикла находятся пептидил-тРНК (в П-центре) и аа-тРНК (в А-центре). При этом их акцепторные петли и связанные с ними аминокислотные остатки располагаются в каталитическом (К-) центре. Последний и осуществляет пептидилтрансферазную реакцию: переносит пептидил (или инициирующую аминокислоту – формилметионин у прокариот) на аминокислоту поступившей аа-тРНК. Прежняя тРНК пептидила становится свободной (рис. 40).

В ходе пептидилтрасферазной реакции карбоксильная группа пептидила образует пептидную связь с аминогруппой очередной аминокислоты (рис. 41). Таким образом, рост пептидной цепи при трансляции происходит в направлении от N- к С-концу.

3. Транслокация – перемещение пептидил-тРНК из А-центра в П-центр в результате передвижения рибосомы по мРНК на один кодон. Свободная тРНК вытесняется из рибосомы, и одновременно освобождается А-центр, необходимый для связывания следующей аа-тРНК. Транслокация идет с участием белкового фактора EF-G (у бактерий) и сопровождается гидролизом одной молекулы ГТФ.

Таким образом, удлинение пептидной цепи на один аминокислотный остаток требует расхода двух молекул ГТФ (одна идет на связывание аа-тРНК, вторая – на траслокацию). Многократное повторение циклов элонгации приводит к включению в строящуюся пептидную цепь аминокислотных остатков в соответствии с последовательностью кодонов в мРНК.

Терминация трансляции . Сигналом об окончании трансляции служит появление в рибосоме одного из терминирующих кодонов мРНК: УАА, УАГ или УГА. С терминирующим кодоном, находящимся в А-центре, взаимодействуют особые белки – факторы терминации, или рилизинг-факторы (от англ. relеase – освобождать). У бактерий в терминации трансляции участвуют три белковых фактора: RF-1, RF-2 и RF-3. Фактор RF-1 узнает кодоны УАА и УАГ, а фактор RF-2 – кодоны УАА и УГА. Фактор RF-3 выполняет вспомогательную роль, стимулируя работу RF-1 и RF-2. При поступлении в рибосому одного из терминирующих кодонов с ним немедленно связывается соответствующий RF-фактор и тем самым блокирует присоединение аа-тРНК. Присоединение факторов терминации стимулирует гидролизную активность пептидилтрасферазного (каталитического) центра, в результате чего связь полипептида с тРНК гидролизуется. Синтезированный белок отделяется от рибосомы, одновременно отделяются тРНК и мРНК, а рибосома диссоцирует на субчастицы (рис. 42).

В терминации трансляции принимает участие молекула ГТФ, которая, вероятно, служит аллостерическим регулятором активности белковых факторов терминации.

Рис. 42. Терминация синтеза пептидной цепи у бактерий

14. Биосинтез белков. Трансляция. Рибосомный цикл.

Биосинтез белка — сложный многостадийный процесс синтеза полипептидной цепи из аминокислотных остатков, происходящий на рибосомах клеток живых организмов с участием молекул мРНК и тРНК.

ББ протекает в два этапа – транскрипция (от ДНК до синтеза зрелой мРНК), трансляция (с выхода зрелой мРНК в цитоплазму и синтеза полипептида.)

Трансляция. В прокариотических клетках процесс трансляции сопряжен с синтезом мРНК: они происходят практически одновременно.

Белки в рибосоме держатся на каркасе, состоящем из рибосомной РНК. Формирование рибосомы начинается с того, что рибосомная РНК сворачивается и на нее в определенном порядке начинают налипать белки. На рисунке представлена рибосомная РНК. В ней самокомплементарные участки нити РНК спариваются, образуя шпильки (вторичная структура), и затем РНК сворачивается (третичная структура РНК), образуя каркас субчастиц.

Еще один вид РНК, участвующей в синтезе белка, это транспортная РНК (тРНК). Молекулы тРНК относительно небольшие (по сравнению с рибосомной или матричной РНК). Все тРНК имеют общую вторичную структуру. За счет спаривания комплементарных участков молекулы тРНК образуется три «стебля» с петлями на концах и один «стебель», образованный 5'- и 3'-концами молекулы тРНК (иногда образуется еще дополнительная пятая петля). Изображение этой структуры похоже на крест или клеверный лист. «Голова» на этом листе представлена антикодонной петлей, здесь находится антикодо – те три нуклеотида, которые комплементарно взаимодействуют с кодоном в мРНК. Противоположный антикодонной петле стебель, образованный концами молекулы, называется акцепторным стеблем – сюда присоединяется соответствующая аминокислота. Распознают подходящие друг другу тРНК и аминокислоты специальные ферменты, называемые аминоацил-тРНК синтетазами. Для каждой аминокислоты есть своя аминоацил-тРНК синтетаза.

В рибосоме находится матричная РНК (мРНК). С кодоном (тремя нуклеотидами) мРНК комплементарно связан антикодон транспортной РНК, на которой висит остаток аминокислоты. На рисунке видна такая структура (тРНК вместе с аминокислотой, которая называется аминоцил-тРНК).

Процесс трансляции, также как и процесс транскрипции, связан с перемещением вдоль молекулы нуклеиновой кислоты, разница в том, что рибосома шагает на три нуклеотида, в то время как РНК-полимераза — на один.

Рибосомы про- и эукариот очень сходны по структуре и функциям. Они состоят из двух субчастиц: большой и малой. У эукариот малая субчастица образована одной молекулой рРНК и 33 молекулами разных белков. Большая субчастица объединяет три молекулы рРНК и около 40 белков. Прокариотические рибосомы и рибосомы митохондрий и пластид содержат меньше компонентов.

15. Этапы трансляции (инициации, элонгации, терминации)

Инициация трансляции. Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК. Для инициации необходимо также наличие определённых нуклеотидных последовательностей в районе стартового кодона. Немаловажн. роль в защите 5'-конца мРНК принадлеж. 5'-кэпу. Сущ. последовательности, отличающей стартовый AUG от внутренних совершенно необходимо, так как в противном случае инициация синтеза белка происходила бы хаотично на всех AUG-кодонах. Процесс инициации обеспеч. специальными белками — факторами инициации. (кот. подвижно связаны с малой субчастицей рибосомы. По завершении фазы инициации и образования комплекса рибосома — мРНК — инициирующая аминоацил-тРНК эти факторы отделяются от рибосомы.) Механизмы инициации трансляции у про- и эукариот существенно отличаются: прокариотические рибосомы потенциально способны нах. стартовый AUG и инициировать синтез на любых участках мРНК.

Фаза элонгации, или удлинения пептида, включает в себя все реакции от момента образования первой пептидной связи до присоединения последней аминокислоты. Она представляет собой циклически повторяющиеся события, при которых происходит специфическое узнавание аминоацил-тРНК очередного кодона, находящегося в А-участке, комплементарное взаимодействие между антикодоном и кодоном. В процессе наращивания полипептидной цепи принимают участие два белковых фактора элонгации. Первый (EF1a у эукариот, EF-Tu — у прокариот) переносит заряженную тРНК в А (аминоацил)-сайт рибосомы. После формирования пептидной связи, что катализируется рРНК, и переноса связанной с тРНК пептида в из Р-сайта в А-сайт второй белок (EF2 у эукариот, EF-G — у прокариот) катализирует перемещение рибосомы на один триплет. Таким образом петидил-тРНК оказывается вновь в Р-сайте, а «пустая» тРНК в Р-сайте — в Е-сайте. Цикл элонгации завершается, когда новая тРНК с антикодоном, подходящим к кодону в А-сайте доставлена EF1a (или EF-Tu). Сборка пептидной цепи осуществляется с достаточно большой скоростью, зависящей от температуры. У бактерий при 37 °С она выражается в добавлении к подипептиду от 12 до 17 аминокислот в 1 с. В эукариотических клетках эта скорость ниже и выражается в добавлении двух АК в 1 с.

Фаза терминации, или завершения синтеза полипептида, связана с узнаванием специфическим рибосомным белком одного из терминирующих кодонов (УАА, УАГ или У ГА), когда тот входит в зону А-участка рибосомы. При этом к последней аминокислоте в пептидной цепи присоединяется вода, и ее карбоксильный конец отделяется от тРНК. В результате завершенная пептидная цепь теряет связь с рибосомой, кот. распадается на две субчастицы.

Трансляция

Под трансляцией в биологии понимают синтез из аминокислот полипептидов. который протекает в цитоплазме на рибосомах при участии 1) мРНК в качестве матрицы, 2) тРНК в качестве переносчика аминокислот, а также 3) ряда белковых факторов. выполняющих каталитическую функцию на разных этапах процесса. Трансляция протекает в клетках всех живых организмов, это фундаментальный процесс живой природы.

С информационной точки зрения трансляцию можно определить как механизм перевода последовательности триплетов мРНК в последовательность аминокислот белка.

Функция рибосом состоит в удерживании в нужном положении мРНК, тРНК и белковых факторов до тех пор, пока не произойдет определенная химическая реакция. Чаще всего это образование пептидной связи между соседними аминокислотами.

Трансляция и биосинтез белка обычно означают одно и то же. Однако, когда говорят о биосинтезе белка, то нередко в него включают посттрансляционные модификации полипептидов (приобретение ими вторичной, третичной и четверичной структур), а также иногда могут включать процесс транскрипции. С этой точки зрения трансляция рассматривается как важный этап в биосинтезе белков.

Процесс трансляции у эукариот и прокариот имеет ряд отличий, в основном связанный с разнообразием и активностью белковых факторов.

На одной цепочке мРНК может находится несколько рибосом, образуя полисому. При этом сразу происходит синтез нескольких идентичных полипептидов (но каждый находится на своей стадии синтеза).

Синтез одного белка обычно длится несколько секунд.

Аминокислоты, из которых синтезируется полипептид, обязательно проходят стадию активации. Сам же процесс трансляции включает три стадии: инициацию, элонгацию и терминацию.

Процесс трансляции обладает свойством специфичности. Во-первых, определенным кодонам мРНК соответствуют свои тРНК. Во вторых, аминокислоты присоединяются только к «своим» тРНК.

Активация аминокислот

Активация аминокислот необходима, так как только в таком состоянии они способны соединяться с тРНК и позже образовывать между собой пептидные связи.

В цитоплазме клеток всегда находятся свободные (не соединенные с другими веществами) аминокислоты. Специфичные ферменты в присутствии АТФ преобразуют аминокислоту в аминоациладенилат. который уже способен соединяться с тРНК.

Существует класс ферментов – аминоацил-тРНК-синтетазы. – которые активируют аминокислоты, используя при этом энергию АТФ. Каждая аминокислота активируется своим ферментом, после чего присоединяется только к своей тРНК. Образуется комплекс аминокислоты с тРНК – аминоацил-тРНК (аа-тРНК) .

Инициация трансляции

Инициация трансляции включает следующие последовательно протекающие при участии факторов инициации этапы:

Присоединение 5'-конца мРНК к малой субъединице рибосомы. При этом стартовый кодон (AUG) размещается в недостроенном (из-за отсутствия большой субъединицы) P-сайте рибосомы.

Комплекс аа-тРНК с соответствующим антикодоном присоединяется к стартовому кодону мРНК. У эукариот кодон AUG кодирует аминокислоту метионин, у прокариот — формил-метионин. Позже эти стартовые аминокислоты вырезаются из готового полипептида.

Происходит объединение субъединиц рибосом, в результате чего достраиваются их P- и A-сайты.

Этапы трансляции Схема строения рибосомы (A, P, E — участки-сайты для молекул тРНК)

Таким образом, на этапе инициации происходит распознавание рибосомой стартового кодона и подготовка к началу синтеза.

Образующаяся связь между рибосомой и мРНК обратима, мРНК после синтеза полипептида может быть отсоединена от рибосомы. В последствии мРНК используется еще раз или разрушается специальными ферментами.

Стартовый кодон AUG отличается от других таких же кодонов в середине мРНК тем, что перед ним находится кэп и определенные нуклеотидные последовательности. Именно благодаря им AUG распознается как стартовый. (Это касается в основном эукариот.)

Элонгация трансляции

На этом этапе происходит непосредственный синтез полипептидной цепочки. Процесс элонгации состоит из множества циклов. Один цикл элонгации — это присоединение одной аминокислоты к растущей полипептидной цепочке.

Уже на этапе инициации P-сайт рибосомы оказывается занятым первой тРНК, несущей аминокислоту метионин. В первом цикле элонгации в A-сайт рибосомы заходит второй комплекс aa-тРНК. Это будет та тРНК, чей антикодон комплементарен следующему (за стартовым AUG) кодону.

A(аминоацил)- и P(пептидил)-сайты располагают комплексы аа-тРНК так, что между аминокислотами протекает химическая реакция, и образуется пептидная связь.

После этого первая (находящаяся в P-сайте) тРНК освобождается от своей аминокислоты. В результате последняя оказывается связанной только со второй аминокислотой пептидной связью. Вторая аминокислота связана со второй тРНК, находящейся в A-сайте.

Рибосома перемещается по нити мРНК на один триплет. При этом первая т-РНК оказывается в E-сайте (exit) рибосомы, после чего покидает ее. Вторая т-РНК, связанная с двумя аминокислотами, переходит в P-сайт. A-сайт освобождается для поступления третьего комплекса аа-тРНК.

Следующие циклы элонгации протекают аналогично первому. Когда A-сайт освобождается, в него может зайти аа-тРНК, чей антикодон комплементарен кодону мРНК, находящемся в этот момент в A-сайте.

Терминация трансляции

Терминация — это завершения синтеза полипептидной цепочки и ее отделение. Терминация наступает, когда рибосома встречает один из терминирующих кодонов (UAA, UAG, UGA), для которых не существует своих тРНК. Эти участки мРНК распознаются специальными белками — факторами терминации .

33. основные этапы трансляции

33. Основные этапы трансляции

Трансляция — синтез полипептидной цепи с использованием мРНК в роли матрицы. Как и транскрипция, трансляция — сложный многостадийный процесс, требующий значительных затрат энергии и участия большого числа (до 300) вспомогательных молекул. В трансляции участвуют все три основных типа РНК:

м-, р- и тРНК. мРНК является информационной матрицей; тРНК “подносят” аминокислоты и узнают кодоны мРНК; рРНК вместе с белками образуют рибосомы, которые удерживают мРНК, тРНК и белок и осуществляют синтез полипептидной цепи. Процесс трансляции основывается на том, что каждому триплету мРНК (кодону) соответствует определенная аминокислота. Генетический код расшифровывают (реализуют) тРНК. Напомним, что тРНК имеет структуру, состоящую из четырех петель. К одной из них присоединяется аминокислота (акцепторная петля), в противоположной (антикодоновой) находится триплет нуклеоти-дов, комплементарный кодону мРНК. Этот триплет называют антикодоном. Так, аминокислоте триптофану соответствует кодон УГГ в мРНК, триптофановая тРНК имеет антикодон АЦЦ.

Транскрипция состоит из подготовительного и трех основных этапов. Подготовительный этап. На этом этапе происходит образование аминоацил-тРНК — присоединение аминокислоты к соответствующей тРНК. Эти реакции протекают в цитоплазме и осуществляются ферментами ами-ноацил-тРНК-синтетазами. Именно эти ферменты контролируют соответствие аминокислоты типу тРНК (ее антикодону).

1. Инициация. Происходит образование цельной ри-босомы, присоединение мРНК и установление первой аминокислоты. Напомним, что каждая рибосома состоит из двух субъединиц — малой и большой. В нерабочем состоянии они обычно не связаны друг с другом (говорят, что рибосома диссоциирована). В процессе же трансляции рибосомы находятся в “собранном” состоянии. В цельной рибосоме выделяют участок присоединения тРНК, “нагруженной” аминокислотой (то есть аминоацил-тРНК) — акцепторный (А-сайт) и участок удержания тРНК с растущей полипептидной цепью — пеп-тидильный (Р-сайт) (в молекулярной биологии выражение “участок цепи” часто заменяют термином “сайт”). Непосредственной связи между мРНК и растущей белковой цепью нет — она осуществляется через тРНК. Во время инициации (при участии трех вспомогательных белковых факторов) происходит связывание мРНК с малой субъединицей рибосомы, затем к первому кодону своим антикодоном присоединяется “груженая” (несущая аминокислоту) тРНК, а после этого к образовавшемуся комплексу присоединяется большая субъединица рибосомы. Интересно, что первой аминокислотой всех белков у эукариотических организмов всегда является метионин, а у прокариот — формил-метионин.

2. Элонгация. Ко второму кодону (в А-сайт рибосомы) присоединяется еще одна аминоацил-тРНК. Между карбоксильной группой (-СООН) первой аминокислоты и аминогруппой (-NH,)второй образуется пеп-тидная связь. После этого первая аминокислота отсоединяется от своей тРНК и “повисает” на соединенной с ней аминокислоте второй тРНК. Пустая первая тРНК освобождается из комплекса с рибосо-мой, и Р-сайт становится незанятым. Рибосома “делает шаг” вдоль мРНК. При этом тРНК с аминокислотами перемещается из А-сайта в Р-сайт. “Шаг” рибосомы всегда строго определен и равен трем нук-леотидам (кодону). Движение рибосомы вдоль мРНК называется транслокацией. Как репликация и транскрипция, транслокация всегда осуществляется в 5′ — 3′ направлении мРНК.

3. Терминация. Синтез полипептидной цепи идет до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов. В этот момент белковая цепь отделяется, а рибосома диссоциирует на субъединицы. Практически все белки по окончании своего синтеза подвергаются созреванию или процессингу — реакциям посттрансляционных модификаций. После этого они (в основном по “трубопроводу” эндоплазматической сети) транспортируются к месту своего назначения.

Характерно, что мРНК транслируется не одной, а одновременно несколькими (до 80) рибосомами. Такие группы рибосом, осуществляющие синтез белка на одной молекуле мРНК, называют полисомами. В результате этого резко увеличивается “производительность” трансляции в единицу времени.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *