Энтропия формула

Энтропия. Физический смысл энтропии. Энтропия и вероятность

Энтропия . Физический смысл энтропии. Энтропия при обратимых и необратимых процессах в замкнутой системе. Второе начало термодинамики и превращение теплоты в работу.

Энтропия. Физический смысл энтропии. Энтропия и вероятность

Рассматривая КПД тепловой машины, работающей по циклу Карно . . можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величины количества теплоты, отданного рабочим телом холодильнику, к величине количества теплоты, принятого от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение: . Отношение Лоренц назвал приведённой теплотой [1-3,5]. Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

Используя первое начало термодинамики для обратимых процессов, и деля обе части этого равенства на температуру, получим:

Выразим из уравнения Менделеева-Клапейрона . подставим в уравнение (3.70) и получим:

Учтём, что . а . подставим их в уравнение (3.71) и получим:

Правая часть этого равенства является полным дифференциалом, следовательно, при обратимых процессах и приведённая теплота тоже является полным дифференциалом, что является признаком функции состояния.

Функция состояния, дифференциалом которой является . называется энтропией и обозначается S. Таким образом, энтропия – функция состояния. После введения энтропии формула (3.72) будет иметь вид:

где dS – приращение энтропии. Равенство (3.73) справедливо только для обратимых процессов и удобно для расчёта изменения энтропии при конечных процессах:

Если система обратимым путём совершает круговой процесс (цикл), то . а, следовательно, DS=0 , то S = const .

Выражая количество теплоты через приращение энтропии для элементарного процесса, и подставляя его в уравнение для первого начала термодинамики, получим новый вид записи этого уравнения, которое принято называть основным термодинамическим тождеством [1-5]:

Таким образом, для расчёта изменения энтропии при обратимых процессах удобно использовать приведённую теплоту.

В случае необратимых неравновесных процессов . а для необратимых круговых процессов выполняется неравенство Клаузиуса (доказательство см. в [1,2]):

Рассмотрим, что происходит с энтропией в изолированной термодинамической системе. В изолированной термодинамической системе при любом обратимом изменении состояния её энтропия не изменится . Математически это можно записать так: ?S = 0 или S = const .

Рассмотрим, что происходит с энтропией термодинамической системы при необратимом процессе. Предположим, что переход из состояния 1 в состояние 2 по пути L1 обратим, а из состояния 2 в состояние 1 по пути L2 – необратим (рис.3.13).

Тогда справедливо неравенство Клаузиуса (3.76). Запишем выражение для правой части этого неравенства, соответствующее нашему примеру:

Первое слагаемое в этой формуле может быть заменено изменением энтропии, так как этот процесс обратимый. Тогда неравенство Клаузиуса можно записать в виде:

Отсюда . Так как . то окончательно можно записать:

Если система изолирована, то . а неравенство (3.77) будет иметь вид:

то есть энтропия изолированной системы при необратимом процессе возрастает. Рост энтропии продолжается не беспредельно, а до определённого максимального значения, характерного для данного состояния системы. Это максимальное значение энтропии соответствует состоянию термодинамического равновесия. Рост энтропии при необратимых процессах в изолированной системе означает, что энергия, которой обладает система, становится менее доступной для преобразования в механическую работу. В состоянии равновесия, когда энтропия достигает максимального значения, энергия системы не может быть преобразована в механическую работу.

Если же система не изолирована, то энтропия может, как убывать, так и возрастать в зависимости от направления теплообмена.

Энтропия как функция состояния системы, может служить таким же параметром состояния, как температура, давление, объём. Изображая тот или иной процесс на диаграмме (Т,S ), можно дать математическую интерпретацию количества теплоты, как площади фигуры под кривой, изображающей процесс. На рис. 3.14 приведена диаграмма для изотермического процесса в координатах энтропия – температура.

Энтропия может быть выражена через параметры состояния газа – температуру, давление, объём. Для этого из основного термодинамического тождества (3.75) выразим приращение энтропии:

Проинтегрируем это выражение и получим:

Изменение энтропии можно выразить и через другую пару параметров состояния – давление и объём. Для этого нужно выразить температуры начального и конечного состояний из уравнения состояния идеального газа через давление и объём и подставить в (3.79):

При изотермическом расширении газа в пустоту Т1 = Т2. а значит первое слагаемое в формуле (3.79) обнулится и изменение энтропии будет определяться только вторым слагаемым:

Несмотря на то, что во многих случаях для расчёта изменения энтропии удобно использовать приведённую теплоту, ясно, что приведённая теплота и энтропия – разные, не тождественные понятия.

Рассмотрим физический смысл энтропии . Для этого используем формулу (3.81), для изотермического процесса, при котором не изменяется внутренняя энергия, а всевозможные изменения характеристик обусловлены лишь изменением объёма. Рассмотрим связь объёма, занимаемого газом в равновесном состоянии, с числом пространственных микросостояний частиц газа. Число микросостояний частиц газа, с помощью которых реализуется данное макросостояние газа как термодинамической системы, можно подсчитать следующим образом. Разобьём весь объём на элементарные кубические ячейки со стороной d

10 –10 м (порядка величины эффективного диаметра молекулы). Объём такой ячейки будет равен d 3. В первом состоянии газ занимает объём V1 . следовательно, число элементарных ячеек, то есть число мест N1. которые могут занимать молекулы в этом состоянии будет равно . Аналогично для второго состояния с объёмом V2 получим . Следует отметить, что изменение положений молекул соответствует новому микросостоянию. Не всякое изменение микросостояния приведёт к изменению макросостояния. Предположим, молекулы могут занимать N1 мест, тогда обмен местами любых молекул в этих N1 ячейках не приведёт к новому макросостоянию. Однако, переход молекул в другие ячейки, приведёт к изменению макросостояния системы. Число микросостояний газа, соответствующих данному макросостоянию, можно подсчитать, определив число способов размещения частиц этого газа по элементарным ячейкам (основные понятия и формулы элементарной комбинаторики можно посмотреть, например, в [2]). Для упрощения расчётов рассмотрим 1 моль идеального газа. Для 1 моля идеального газа формула (3.81) будет иметь вид:

Число микросостояний системы, занимающей объём V1. обозначим через Г1 и определим, подсчитав число размещений NA (число Авогадро) молекул, которые содержатся в 1 моле газа, по N1 ячейкам (местам): . Аналогично подсчитаем число микросостояний Г2 системы, занимающей объём V2. .

Число микросостояний Гi. с помощью которых можно реализовать i- тое макросостояние, называется термодинамической вероятностью данного макросостояния. Термодинамическая вероятность Г ≥ 1.

Для идеальных газов число свободных мест гораздо больше числа молекул, то есть N1 >9gt; NA и N2 >9gt; NA.. Тогда, учитывая выражение чисел N1 и N2 через соответствующие объёмы, получим:

Отсюда можно выразить отношение объёмов через отношение термодинамических вероятностей соответствующих состояний:

Подставим (3.83) в (3.82) и получим: . Учитывая, что отношение молярной газовой постоянной и числа Авогадро . есть постоянная Больцмана k, а также то, что логарифм отношения двух величин равен разности логарифмов этих величин, получим: . Отсюда можно заключить, что энтропия i- того состояния Si определяется логарифмом числа микросостояний, посредством которых реализуется данное макросостояние:

Формула (3.84) называется формулой Больцмана . впервые получившего её и понявшего статистический смысл энтропии . как функции беспорядка . Формула Больцмана имеет более общее значение, чем формула (3.82), то есть может быть использована не только для идеальных газов, и позволяет раскрыть физический смысл энтропии. Чем более упорядочена система, тем меньше число микросостояний, посредством которых осуществляется данное макросостояние, тем меньше энтропия системы.

Рост энтропии в изолированной системе, где происходят необратимые процессы, означает движение системы в направлении наиболее вероятного состояния, которым является состояние равновесия. Можно сказать, что энтропия является мерой беспорядка системы; чем больше беспорядка в ней, тем выше энтропия. В этом заключается физический смысл энтропии .

В состоянии термодинамического равновесия молекулы распределены равномерно по объёмам, при этом все направления в пространстве равноправны. В системе наблюдается максимальный беспорядок. Термодинамическая вероятность, а, следовательно, энтропия равновесного состояния системы максимальна .

Неравновесная термодинамическая система после прекращения действия источника, поддерживающего её в неравновесном состоянии, с течением времени переходит в наиболее вероятное равновесное состояние. Такой переход сопровождается ростом энтропии. Следовательно, по изменению энтропии можно судить о направлении протекания самопроизвольного процесса.

Второе начало термодинамики — один из основных законов термодинамики, устанавливающий необратимость макроскопических процессов . протекающих с конечной скоростью. Другими словами, это закон . устанавливающий направление протекания самопроизвольных процессов . Исторически второе начало термодинамики возникло из анализа работы тепловых машин [1-5,10]. Существует несколько формулировок второго начала термодинамики. Во-первых, второе начало термодинамики накладывает ограничения на возможности циклического получения механической работы за счёт полученной теплоты (формулировки Клаузиуса и Томсона (Кельвина)). Во-вторых, второе начало термодинамики с помощью понятия энтропии позволяет судить о направлении протекания процессов в системе (формулировка Больцмана).

Теплота не может самопроизвольно перейти от более холодного тела к более нагретому без каких-либо других изменений в системе.

Расчет приращения энтропии

Энтропия – это такая функция состояния термодинамической системы, дифференциал которой

Здесь Энтропия формула – приведенное количество теплоты, где Энтропия формула – бесконечно малое количество теплоты, сообщаемое телу при температуре T. Из формулы (31) следует, что единица измерения энтропии – 1 Энтропия формула .

Второе начало термодинамики . как закон возрастания энтропии :

Энтропия формула

Энтропия замкнутой термодинамической системы возрастает(Энтропия формула),если в системе идут необратимые процессы, и не изменяется (Энтропия формула)при равновесии. Замкнутой является термодинамическая система, которая не обменивается энергией с окружающей средой, т. е. для нее Энтропия формула

Энтропия незамкнутой системы может изменяться любым образом (убывать, возрастать, оставаться постоянной) в соответствии с формулой (31); например, если Энтропия формула. т. е. система отдает теплоту, то и Энтропия формула. что означает уменьшение энтропии системы, но при Энтропия формула величина Энтропия формула и энтропия системы возрастает.

Энтропия является аддитивной величиной. энтропия системы равна сумме энтропий тел, входящих в систему. Например, энтропия смеси двух газов, а также ее приращение Энтропия формула. – равно сумме приращений энтропии первого и второго компонентов смеси.

В соответствии с определительной формулой (31) для адиабатного процесса ( Энтропия формула ) имеем Энтропия формула ; следовательно, обратимый адиабатный процесс протекает при постоянной энтропии. Поэтому адиабатный процесс называют изоэнтропийным.

Расчет приращения энтропии Энтропия формула при переходе системы из состояния 1 в состояние 2 ведется путем суммирования бесконечно малых приращений Энтропия формула с учетом формулы (31):

где величина Энтропия формула. согласно формуле (21):

Энтропия формула .

В изобарном процессе приращение энтропии

В изохорном процессе аналогично:
Энтропия формула (34)

В изотермическом процессе. с учетом первого закона ТД в виде Энтропия формула и формулы для работы, находим

Энтропия формула .

При фазовых переходах . протекающих при постоянной температуре T. в соответствии с формулой (32), получаем

где Энтропия формула – теплота фазового перехода. Например, для плавления льда

Энтропия формула ,

где &#&55; – удельная (на 1 кг массы) теплота плавления льда.

Энтропия формула Школьная Энциклопедия

Термодинамическая энтропия

  • Энтропия формула

Подробности Категория: Термодинамика Опубликовано 03.01.2015 15:41 Просмотров: 4512

Энтропия формула

К макроскопическим параметрам термодинамической системы относятся давление. объём и температура. Однако существует ещё одна важная физическая величина, которую используют для описания состояний и процессов в термодинамических системах. Её называют энтропией.

Что такое энтропия

Энтропия формула

Впервые это понятие ввёл в 1865 г. немецкий физик Рудольф Клаузиус. Энтропией он назвал функцию состояния термодинамической системы, определяющую меру необратимого рассеивания энергии.

Что же такое энтропия?

Прежде чем ответить на этот вопрос, познакомимся с понятием «приведенной теплоты». Любой термодинамический процесс, проходящий в системе, состоит из какого-то количества переходов системы из одного состояния в другое. Приведенной теплотой называют отношение количества теплоты в изотермическом процессе к температуре, при которой происходит передача этой теплоты.

Для любого незамкнутого термодинамического процесса существует такая функция системы, изменение которой при переходе из одного состояния в другое равно сумме приведенных теплот. Этой функции Клаузиус дал название «энтропия » и обозначил её буквой S . а отношение общего количества теплоты ∆Q к величине абсолютной температурыТ назвал изменением энтропии .

Энтропия формула

Обратим внимание на то, что формула Клаузиуса определяет не само значение энтропии, а только её изменение.

Что же представляет собой «необратимое рассевание энергии» в термодинамике?

Одна из формулировок второго закона термодинамики выглядит следующим образом: «Невозможен процесс, единственным результатом которого является превращение в работу всего количества теплоты, полученного системой «. То есть часть теплоты превращается в работу, а какая-то её часть рассеивается. Этот процесс необратим. В дальнейшем рассеиваемая энергия уже не может совершать работу. Например, в реальном тепловом двигателе рабочему телу передаётся не вся теплота. Часть её рассеивается во внешнюю среду, нагревая её.

В идеальной тепловой машине, работающей по циклу Карно, сумма всех приведенных теплот равна нулю. Это утверждение справедливо и для любого квазистатического (обратимого) цикла. И неважно, из какого количества переходов из одного состояния в другое состоит такой процесс.

Если разбить произвольный термодинамический процесс на участки бесконечно малой величины, то приведенная теплота на каждом таком участке будет равна δQ/T . Полный дифференциал энтропии dS = δQ/T .

Энтропию называют мерой способности теплоты необратимо рассеиваться. Её изменение показывает, какое количество энергии беспорядочно рассеивается в окружающую среду в виде теплоты.

В замкнутой изолированной системе, не обменивающейся теплом с окружающей средой, при обратимых процессах энтропия не изменяется. Это означает, что дифференциал dS = 0 . В реальных и необратимых процессах передача тепла происходит от тёплого тела к холодному. В таких процессах энтропия всегда увеличивается (dS ˃ 0 ). Следовательно, она указывает направление протекания термодинамического процесса.

Формула Клаузиуса, записанная в виде dS = δQ/T . справедлива лишь для квазистатических процессов. Это идеализированные процессы, являющиеся чередой состояний равновесия, следующих непрерывно друг за другом. Их ввели в термодинамику для того, чтобы упростить исследования реальных термодинамических процессов. Считается, что в любой момент времени квазистатическая система находится в состоянии термодинамического равновесия. Такой процесс называют также квазиравновесным.

Конечно, в природе таких процессов не существует. Ведь любое изменение в системе нарушает её равновесное состояние. В ней начинают происходить различные переходные процессы и процессы релаксации, стремящиеся вернуть систему в состояние равновесия. Но термодинамические процессы, протекающие достаточно медленно, вполне могут рассматриваться как квазистатические.

На практике существует множество термодинамических задач, для решения которых требуется создание сложной аппаратуры, создание давления в несколько сот тысяч атмосфер, поддержание очень высокой температуры в течение длительного времени. А квазистатические процессы позволяют рассчитать энтропию для таких реальных процессов, предсказать, как может проходить тот или иной процесс, реализовать который на практике очень сложно.

Закон неубывания энтропии

Второй закон термодинамики на основании понятия энтропии формулируется так: «В изолированной системе энтропия не уменьшается ». Этот закон называют также законом неубывания энтропии .

Если в какой-то момент времени энтропия замкнутой системы отличается от максимальной, то в дальнейшем она может только увеличиваться, пока не достигнет максимального значения. Система придёт в состояние равновесия.

Клаузиус был уверен, что Вселенная представляет собой замкнутую систему. А раз так, то её энтропия стремится достичь максимального значения. Это означает, что когда-нибудь все макроскопические процессы в ней прекратятся, и наступит «тепловая смерть». Но американский астроном Эдвин Пауэлл Хаблл доказал, что Вселенную нельзя назвать изолированной термодинамической системой, так как она расширяется. Советский физик академик Ландау считал, что закон неубывания энтропии к Вселенной применять нельзя, так как она находится в переменном гравитационном поле. Современная наука пока не в состоянии дать ответ на вопрос, замкнутой ли системой является наша Вселенная или нет.

Принцип Больцмана

Энтропия формула

Любая замкнутая термодинамическая система стремится к состоянию равновесия. Все самопроизволные процессы, происходящие в ней, сопровождаются ростом энтропии.

В 1877 г. австрийский физик-теоретик Людвиг Больцман связал энтропию термодинамического состояния с количеством микросостояний системы. Считается, что саму формулу расчёта значения энтропии позднее вывел немецкий физик-теоретик Макс Планк.

где k = 1,38·10 −23 Дж/К — постоянная Больцмана; W — количество микросостояний системы, которые реализуют данное макростатическое состояние, или число способов, которыми это состояние может быть реализовано.

Мы видим, что энтропия зависит только от состояния системы и не зависит от того, каким способом система перешла в это состояние.

Физики считают энтропию величиной, характеризующей степень беспорядка термодинамической системы. Любая термодинамическая система всегда стремится уравновесить свои параметры с окружающей средой. К такому состоянию она приходит самопроизвольно. И когда состояние равновесия достигнуто, система уже не может совершать работу. Можно считать, что она находится в беспорядке.

Энтропия характеризует направление протекания термодинамического процесса обмена теплом между системой и внешней средой. В замкнутой термодинамической системе она определяет, в каком направлении протекают самопроизвольные процессы.

Все процессы, протекающие в природе, необратимы. Поэтому они протекают в направлении увеличения энтропии.

4. Второй закон термодинамики. Энтропия

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния — энтропия S. которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше — к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,
d 2 S < 0).

Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия — функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с помощью двух эквивалентных подходов — статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

где k = 1.38 10 -23 Дж/К — постоянная Больцмана (k = R / NA ), W — так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана .

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

где G (E ) — фазовый объем, занятый микроканоническим ансамблем с энергией E .

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

где температура играет роль обобщенной силы, а энтропия — обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении .

Количество теплоты, необходимое для изменения температуры системы, выражают с помощью теплоемкости: Qобр = Cp dT .

Если теплоемкость не зависит от температуры в интервале от T1 до T2. то уравнение (4.8) можно проинтегрировать:

Если изменение температуры происходит при постоянном объеме, то в формулах (4.9) и (4.10) Cp надо заменить на CV .

2) Изотермическое расширение или сжатие .

Для расчета энтропии в этом случае надо знать уравнение состояния системы. Расчет основан на использовании соотношения Максвелла:

В частности, для изотермического расширения идеального газа (p = nRT / V )

Этот же результат можно получить, если использовать выражение для теплоты изотермического обратимого расширения идеального газа: Qобр = nRT ln(V2 /V1 ).

3) Фазовые переходы .

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна Hфп. поэтому изменение энтропии равно:

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: Sтв < Sж < Sг. При этом энтропия окружающей среды уменьшается на величину Sф.п.. поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

4) Смешение идеальных газов при постоянных температуре и давлении .

Если n1 молей одного газа, занимающего объем V1. смешиваются с n2 молями другого газа, занимающего объем V2. то общий объем будет равен V1 + V2. причем газы расширяются независимо друг от друга и общее изменение энтропии равно сумме изменений энтропии каждого газа:

где xi — мольная доля i -го газа в полученной газовой смеси. Изменение энтропии (4.14) всегда положительно, т.к. все ln xi < 0, поэтому идеальные газы всегда смешиваются необратимо.

Если при тех же условиях смешиваются две порции одного и того же газа, то уравнение (4.14) уже неприменимо. Никаких изменений в системе при смешивании не происходит, и S = 0. Тем не менее, формула (4.14) не содержит никаких индивидуальных параметров газов, поэтому, казалось бы, должна быть применима и к смешению одинаковых газов. Это противоречие называют парадоксом Гиббса .

В отличие от многих других термодинамических функций, энтропия имеет точку отсчета, которая задается постулатом Планка (третьим законом термодинамики).

При абсолютном нуле T = 0 К все идеальные кристаллы
имеют одинаковую энтропию, равную нулю.

При стремлении температуры к абсолютному нулю не только энтропия стремится к 0, но и ее производные по всем термодинамическим параметрам:

Это означает, что вблизи абсолютного нуля все термодинамические процессы протекают без изменения энтропии. Это утверждение называют тепловой теоремой Нернста .

Постулат Планка позволяет ввести понятие абсолютной энтропии вещества, т.е. энтропии, отсчитанной от нулевого значения при T = 0. Для расчета абсолютной энтропии веществ в стандартном состоянии надо знать зависимости теплоемкости Cp от температуры для каждой из фаз, а также температуры и энтальпии фазовых переходов. Так, например, абсолютная энтропия газообразного вещества в стандартном состоянии при температуре T складывается из следующих составляющих:

В термодинамических таблицах обычно приводят значения абсолютной энтропии в стандартном состоянии при температуре 298 К.

Значения абсолютной энтропии веществ используют для расчета изменения энтропии в химических реакциях:

Пример 4-1. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля)

Интегрируя это равенство, находим зависимость энтропии от объема:

где const зависит от температуры.

Пример 4-2. Рассчитайте изменение энтропии при нагревании 0.7 моль моноклинной серы от 25 до 200 о С при давлении 1 атм. Мольная теплоемкость серы равна:

Температура плавления моноклинной серы 119 о С, удельная теплота плавления 45.2 Дж/г.

Решение. Общее изменение энтропии складывается из трех составляющих: 1) нагревание твердой серы от 25 до 119 о С, 2) плавление, 3) нагревание жидкой серы от 119 до 200 о С.

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V1 до объема V2. а) обратимо; б) против внешнего давления p .

Решение. а) Изменение энтропии газа при обратимом изотермическом расширении можно найти с помощью термодинамического определения энтропии с расчетом теплоты расширения по первому закону:

Так как расширение обратимое, то общее изменение энтропии Вселенной равно 0, поэтому изменение энтропии окружающей среды равно изменению энтропии газа с обратным знаком:

б) Энтропия — функция состояния, поэтому изменение энтропии системы не зависит от того, как совершался процесс — обратимо или необратимо. Изменение энтропии газа при необратимом расширении против внешнего давления будет таким же, как и при обратимом расширении. Другое дело — энтропия окружающей среды, которую можно найти, рассчитав с помощью первого закона теплоту, переданную системе:

В этом выводе мы использовали тот факт, что U = 0 (температура постоянна). Работа, совершаемая системой против постоянного внешнего давления равна: A = p (V2V1 ), а теплота, принятая окружающей средой, равна работе, совершенной системой, с обратным знаком.

Общее изменение энтропии газа и окружающей среды больше 0:

как и полагается для необратимого процесса.

Пример 4-4. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5 О С. Теплота плавления льда при 0 о С равна 6008 Дж/моль. Теплоемкости льда и воды равны 34.7 и 75.3 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс — самопроизвольный.

Решение. Необратимый процесс замерзания воды при температуре -5 О С можно представить в виде последовательности обратимых процессов: 1) нагревание воды от
-5 О С до температуры замерзания (0 О С); 2) замерзание воды при 0 О С; 3) охлаждение льда от 0 до -5 О С:

Изменение энтропии в первом и третьем процессах (при изменении температуры) рассчитывается по формуле (4.9):

Изменение энтропии во втором процессе рассчитывается как для обычного фазового перехода (4.13). Необходимо только иметь в виду, что теплота при замерзании выделяется:

Т.к. энтропия — функция состояния, общее изменение энтропии равно сумме по этим трем процессам:

Энтропия при замерзании убывает, хотя процесс самопроизвольный. Это связано с тем, что в окружающую среду выделяется теплота и энтропия окружающей среды увеличивается, причем это увеличение больше, чем 1181 Дж/К, поэтому энтропия Вселенной при замерзании воды возрастает, как и полагается в необратимом процессе.

4-1. Приведите пример термодинамического процесса, который может быть проведен как обратимо, так и необратимо. Рассчитайте изменение энтропии системы и окружающей среды в обоих случаях.

4-2. Проверьте неравенство Клаузиуса для циклического процесса, представленного в задаче 2.14.

4-3. Рассчитайте мольную энтропию неона при 500 К, если при 298 К и том же объеме энтропия неона равна 146.2 Дж/(моль. К).

4-4. Рассчитайте изменение энтропии при нагревании 11.2 л азота от 0 до 50 о С и одновременном уменьшении давления от 1 атм до 0.01 атм.

4-5. Один моль гелия при 100 о С и 1 атм смешивают с 0.5 моль неона при 0 о С и 1 атм. Определите изменение энтропии, если конечное давление равно 1 атм.

4-6. Рассчитайте изменение энтропии при образовании 1 м 3 воздуха из азота и кислорода (20 об.%) при температуре 25 о С и давлении 1 атм.

4-7. Три моля идеального одноатомного газа (CV = 3.0 кал/(моль. К)), находящегося при T1 = 350 K и P1 = 5.0 атм, обратимо и адиабатически расширяются до давления P2 = 1.0 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии, энтальпии и энтропии в этом процессе.

4-8. Рассчитайте изменение энтропии при нагревании 0.4 моль хлорида натрия от 20 до 850 о С. Мольная теплоемкость хлорида натрия равна:

Температура плавления хлорида натрия 800 о С, теплота плавления 31.0 кДж/моль.

4-9. Рассчитайте изменение энтропии при смешении 5 кг воды при 80 о С с 10 кг воды при 20 о С. Удельную теплоемкость воды принять равной: Cp (H2 O) = 4.184 Дж/(г. К).

4-10. Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 о С, к 200 г воды (90 о С) в изолированном сосуде. Теплота плавления льда равна 6.0 кДж/моль.

4-11. Для некоторого твердого тела найдена зависимость коэффициента расширения от давления в интервале давлений от p1 до p2 :

Насколько уменьшится энтропия этого тела при сжатии от p1 до p2 ?

4-12. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления p1 до давления p2. а) обратимо; б) против внешнего давления p < p2 .

4-13. Запишите выражение для расчета абсолютной энтропии одного моля воды при температуре 300 0 С и давлении 2 атм.

4-14. Нарисуйте график зависимости стандартной энтропии воды от температуры в интервале от 0 до 400 К.

4-15. Запишите энтропию одного моля идеального газа как функцию температуры и давления (теплоемкость считать постоянной).

4-16. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-17. Определите зависимость энтропии от объема для термодинамической системы, которая описывается уравнением состояния (для одного моля):

4-18. Один моль газа описывается уравнением состояния

где f (V ) — некоторая функция, которая не зависит от температуры. Рассчитайте изменение энтропии газа при его необратимом изотермическом расширении от объема V1 до объема V2 .

4-19. Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 О С. Теплота плавления твердого метанола при -98 о С (т.пл.) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55.6 и 81.6 Дж/(моль. К), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс — самопроизвольный.

4-20. Теплоемкость некоторого вещества в интервале температур от T1 до T2 изменяется следующим образом:

Постройте график зависимости энтропии вещества от температуры в этом интервале температур.

4-21. Пользуясь справочными данными, приведите пример самопроизвольной химической реакции, для которой стандартное изменение энтропии меньше 0.

4-22. Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции H2(г) + ЅO2(г) = H2 O(г) а) при 25 о С; б) при 300 о С.

9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.

Рассматривая КПД тепловой машины, работающей по циклу Карно, Энтропия формула, можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величин количества теплоты, отданного рабочим телом холодильнику, и количества теплоты, принятой от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение:Энтропия формула. ОтношениеЭнтропия формулаЛоренц назвалприведённой теплотой . Для элементарного процесса приведённая теплота будет равна Энтропия формула. Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

Используя первое начало термодинамики для обратимых процессов, Энтропия формулаи деля обе части этого равенства на температуру, получим:

Выразим из уравнения Менделеева — Клапейрона Энтропия формула, подставим в уравнение (9-41) и получим:

Учтём, что Энтропия формула, аЭнтропия формула, подставим их в уравнение (9-42) и получим:

Правая часть этого равенства является полным дифференциалом, следовательно, при обратимых процессах и приведённая теплота тоже является полным дифференциалом, что является признаком функции состояния.

Функция состояния, дифференциалом которой является Энтропия формула, называетсяэнтропией и обозначается S . Таким образом, энтропия – функция состояния. После введения энтропии формула (9-43) будет иметь вид:

где dS – приращение энтропии. Равенство (9-44) справедливо только для обратимых процессов и удобно для расчёта изменения энтропии при конечных процессах:

Если система обратимым путём совершает круговой процесс (цикл), то Энтропия формула, а, следовательно,S=0, то S = const.

Выражая количество теплоты через приращение энтропии для элементарного процесса, и подставляя его в уравнение для первого начала термодинамики, получим новый вид записи этого уравнения, которое принято называть основным термодинамическим тождеством:

Таким образом, для расчёта изменения энтропии при обратимых процессах удобно использовать приведённую теплоту.

В случае необратимых неравновесных процессов Энтропия формула, а для необратимых круговых процессов выполняетсянеравенство Клаузиуса :

Рассмотрим, что происходит с энтропией в изолированной термодинамической системе.

В изолированной термодинамической системе при любом обратимом изменении состояния её энтропия не изменится. Математически это можно записать так: S = const.

Энтропия формулаРассмотрим, что происходит с энтропией термодинамической системы при необратимом процессе. Предположим, что переход из состояния 1 в состояние 2 по путиL1 обратим, а из состояния 2 в состояние 1 по пути L2 – необратим (рис.9.13).

Тогда справедливо неравенство Клаузиуса (9-47). Запишем выражение для правой части этого неравенства, соответствующее нашему примеру:

Энтропия формула.

Первое слагаемое в этой формуле может быть заменено на изменение энтропии, так как этот процесс обратимый. Тогда неравенство Клаузиуса можно записать в виде:

Энтропия формула.

Отсюда Энтропия формула. Так какЭнтропия формула, то окончательно можно записать:

Если система изолирована, то Энтропия формула, а неравенство (9-48) будет иметь вид:

тЭнтропия формулао есть энтропия изолированной системы при необратимом процессе возрастает. Рост энтропии продолжается не беспредельно, а до определённого максимального значения, характерного для данного состояния системы. Это максимальное значение энтропии соответствует состоянию термодинамического равновесия. Рост энтропии при необратимых процессах в изолированной системе означает, что энергия, которой обладает система, становится менее доступной для преобразования в механическую работу. В состоянии равновесия, когда энтропия достигает максимального значения, энергия системы не может быть преобразована в механическую работу.

Если же система не изолирована, то энтропия может как убывать, так и возрастать в зависимости от направления теплообмена.

Энтропия как функция состояния системы, может служить таким же параметром состояния, как температура, давление, объём. Изображая тот или иной процесс на диаграмме (Т,S), можно дать математическую интерпретацию количества теплоты, как площади фигуры под кривой, изображающей процесс. На рис.9.14 приведена диаграмма для изотермического процесса в координатах энтропия – температура.

Энтропия может быть выражена через параметры состояния газа – температуру, давление, объём. Для этого из основного термодинамического тождества (9-46) выразим приращение энтропии:

Энтропия формула.

Проинтегрируем это выражение и получим:

Изменение энтропии можно выразить и через другую пару параметров состояния – давление и объём. Для этого нужно выразить температуры начального и конечного состояний из уравнения состояния идеального газа через давление и объём и подставить в (9-50):

При изотермическом расширении газа в пустоту Т12. а значит первое слагаемое в формуле (9-47) обнулится и изменение энтропии будет определяться только вторым слагаемым:

Несмотря на то, что во многих случаях для расчёта изменения энтропии удобно использовать приведённую теплоту, ясно, что приведённая теплота и энтропия – разные, не тождественные понятия.

Выясним физический смысл энтропии . Для этого используем формулу (9-52), для изотермического процесса, при котором не изменяется внутренняя энергия, а всевозможные изменения характеристик обусловлены лишь изменением объёма. Рассмотрим связь объёма, занимаемого газом в равновесном состоянии, с числом пространственных микросостояний частиц газа. Число микросостояний частиц газа, с помощью которых реализуется данное макросостояние газа как термодинамической системы, можно подсчитать следующим образом. Разобьём весь объём на элементарные кубические ячейки со стороной d

10 –10 м (порядка величины эффективного диаметра молекулы). Объём такой ячейки будет равен d 3. В первом состоянии газ занимает объём V1. следовательно, число элементарных ячеек, то есть число мест N1. которые могут занимать молекулы в этом состоянии будет равно Энтропия формула. Аналогично для второго состояния с объёмомV2 получим Энтропия формула. Следует отметить, что изменение положений молекул соответствует новому микросостоянию. Не всякое изменение микросостояния приведёт к изменению макросостояния. Предположим, молекулы могут заниматьN1 мест, тогда обмен местами любых молекул в этих N1 ячейках не приведёт к новому макросостоянию. Однако, переход молекул в другие ячейки, приведёт к изменению макросостояния системы. Число микросостояний газа, соответствующих данному макросостоянию, можно подсчитать, определив число способов размещения частиц этого газа по элементарным ячейкам. Для упрощения расчётов рассмотрим 1 моль идеального газа. Для 1 моля идеального газа формула (9-52) будет иметь вид:

Число микросостояний системы, занимающей объём V1. обозначим через Г1 и определим, подсчитав число размещений NA (число Авогадро) молекул, которые содержатся в 1 моле газа, по N1 ячейкам (местам): Энтропия формула. Аналогично подсчитаем число микросостояний Г2 системы, занимающей объём V2. Энтропия формула.

Число микросостояний Гi. с помощью которых можно реализовать i- тое макросостояние, называется термодинамической вероятностью данного макросостояния. Термодинамическая вероятность Г ≥ 1.

Энтропия формула.

Для идеальных газов число свободных мест гораздо больше числа молекул, то есть N1 >9gt;NA и N2 >9gt;NA.. Тогда, учитывая выражение чисел N1 и N2 через соответствующие объёмы, получим:

Энтропия формула

Отсюда можно выразить отношение объёмов через отношение термодинамических вероятностей соответствующих состояний:

Подставим (9-54) в (9-53) и получим:Энтропия формула. Учитывая, что отношение молярной газовой постоянной и числа Авогадро, есть постоянная Больцманаk, а также то, что логарифм отношения двух величин равен разности логарифмов этих величин, получим:Энтропия формула. Отсюда можно заключить, что энтропияi- того состояния Si определяется логарифмом числа микросостояний, посредством которых реализуется данное макросостояние:

Формула (9-55) называется формулой Больцмана . впервые получившего её и понявшего статистический смысл энтропии . как функции беспорядка . Формула Больцмана имеет более общее значение, чем формула (9-53), то есть может быть использована не только для идеальных газов, и позволяет раскрыть физический смысл энтропии. Чем более упорядочена система, тем меньше число микросостояний, посредством которых осуществляется данное макросостояние, тем меньше энтропия системы. Рост энтропии в изолированной системе, где происходят необратимые процессы, означает движение системы в направлении наиболее вероятного состояния, которым является состояние равновесия. Можно сказать, что энтропия является мерой беспорядка системы; чем больше беспорядка в ней, тем выше энтропия. В этом заключается физический смысл энтропии .




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *