Энергия магнитного поля

Энергия магнитного поля

Энергия магнитного поля.

Магни́тное по́ле — силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения [1]. магнитная составляющая электромагнитного поля [2]

Магнитное поле может создаваться током заряженных частиц и/или магнитными моментами электронов в атомах (и магнитными моментами других частиц, хотя в заметно меньшей степени) (постоянные магниты).

Энергия магнитного поля. создаваемого током в замкнутом контуре индуктивностью L, равна Энергия магнитного поля где I — сила тока в контуре.

Энергия магнитного поля катушки с индуктивностью L, создаваемого током I, равна

Энергия магнитного поля

Проводник, по которому протекает электрический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезновением тока. Магнитное поле, подобно электрическому, является носителем энергии. Естественно предположить, что энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Ф=LI, причем при изменении тока на dI магнитный поток изменяется на dФ=L dI. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу dА=I=LI dI. Тогда работа по созданию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,

Исследование свойств переменных магнитных полей, в частности распространения электромагнитных волн, явилось доказательством того, что энергия магнитного поля локализована в пространстве. Это соответствует представлениям теории поля.

Энергию магнитного поля можно представить как функцию величин, характеризу­ющих это поле в окружающем пространстве. Для этого рассмотрим частный слу­чай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

где Sl = V — объем соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электростатического поля, с той разницей, что электрические величины заменены в нем магнитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднород­ных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т.е. оно относится только к пара- и диамагнетикам.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

§ 16.4 Энергия магнитного поля

Если в контуре с индуктивностью L течёт ток I, то в момент размыкания цепи возникает индукционный ток и им совершается работа. Эта работа совершается за счёт энергии исчезнувшего при размыкании цепи магнитного поля. На основании закона сохранения и превращения энергию магнитного поля превращается главным образом в энергию электрического поля, за счёт которой происходит нагревание проводников. Работа может быть определена из соотношения

Уменьшение энергии магнитного поля равно работе тока, поэтому

Формула справедлива для любого контура и показывает, что энергия магнитного поля зависит от индуктивности контура и силы тока, протекающего по нему.

Рассчитаем энергию однородного магнитного поля длинного соленоида, индуктивность которого определяется по формуле L = μμ0 n 2 V. B этом случае формула энергии примет вид

Энергия магнитного поля

Учитывая, что напряжённость поля внутри бесконечно длинного соленоида Н=In, получаем

Выразим энергию через индукцию магнитного поля B= μμ0 H:

Вследствие того, что магнитное поле соленоида однородно и локализовано внутри соленоида, энергия распределена по объёму соленоида с постоянной плотностью

Учитывая последние три формулы, получаем

Энергия магнитного поля Энергия магнитного поля Энергия магнитного поля

Учитывая правило Ленца, можно заметить, что явление самоиндукции аналогично проявлению инертности тел в механике. Так, вследствие инертности тело не мгновенно приобретает определённую скорость, а постепенно. Так же постепенно происходит и его торможение. То же самое, как мы видели, происходит и с силой тока при самоиндукции. Эту аналогию можно провести и дальше.

эти уравнения эквивалентны.

Эквивалентны и формулы

Энергия магнитного поля Энергия магнитного поля

Примеры решения задач

Пример. В магнитном поле, изменяющемся по закону B=B0 cosωt (B0 =5мТл,

ω=5с -1 ), помещён круговой проволочный виток радиусом r=30см, причём нормаль к витку образует с направлением поля угол α=30º. Определите ЭДС индукции, возникающую в витке в момент времени t=10с.

Дано . B=B0 cosωt; B0 =5мТл=5∙10 -3 Тл; ω=5с -1 ; r=30см=0,3 м; α=30º; t=10 с.

Решение: Согласно закону Фарадея,

Где магнитный поток, сцепленный с витком при произвольном его расположении относительно магнитного поля.

По условию задачи B=B0 cosωt, а площадь кольца S=πr 2. поэтому

Ф=πr 2 B0 cosωt∙cosα. (2)

Подставив выражение (2) в формулу (1) и продифференцировав, получаем искомую ЭДС индукции в заданный момент времени:

Энергия магнитного поля

Пример В соленоиде длиной ℓ=50см и диаметром d=6см сила тока равномерно увеличивается на 0,3А за одну секунду. Определите число витков соленоида, если сила индукционного тока в кольце радиусом 3,1 см из медной проволоки (ρ=17нОм∙м), надетом на катушку, Iк =0,3 А.

Дано: ℓ=50см=0,5 м; d=6см=0,06м; Энергия магнитного поля;rк =3,1см=3.1∙10 -2 м; ρ=17нОм∙м=17∙10 -9 Ом∙м; Iк =0,3 А.

Решение . При изменении силы тока в соленоиде возникает ЭДС самоиндукции

где Энергия магнитного поля— индуктивность соленоида. Подставив это выражение в (1)

Энергия магнитного поля.

ЭДС индукции, возникающая в одном кольце, в N раз меньше, чем найденное значение ЭДС самоиндукции в соленоиде, состоящем из N витков, т.е.

Согласно закону Ома, сила индукционного тока в кольце

где Энергия магнитного поля— сопротивление кольца. Поскольку ℓк =πd, а Sк =πrк 2. выражение (3) примет вид

Энергия магнитного поля

Подставив в эту формулу выражение (2), найдём искомое число витков соленоид

Энергия магнитного поля.

Пример В однородном магнитном поле подвижная сторона (её длина ℓ=20см) прямоугольной рамки (см. рисунок) перемещается перпендикулярно линиям магнитной индукции со скоростью υ=5 м/с. Определите индукцию В магнитного поля, если возникающая в рамке ЭДС индукции εi =0,2 В.

Р Энергия магнитного поляешение . При движении в магнитном поле подвижной стороны рамки поток Ф вектора магнитной индукции сквозь рамку возрастает, что, согласно закону Фарадея,

приводит к возникновению ЭДС индукции.

Поток вектора магнитной индукции, сцепленный с рамкой,

Подставив выражение (2) в формулу (1) и учитывая, что B и ℓ — величины постоянные, получаем

Энергия магнитного поля

откуда искомая индукция магнитного поля

Энергия магнитного поля

Пример В однородном магнитном поле с индукцией В=0,2 Тл равномерно вращается катушка, содержащая N=600 витков, с частотой n=6 с -1. Площадь S поперечного сечения катушка 100см 2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определите максимальную ЭДС индукции вращающейся катушки.

Дано: В=0,2 Тл; N=600; n=6 с -1 ; S=100см 2 =10 -2 м 2.

Решение . Согласно закону Фарадея,

Энергия магнитного поля

где Ф – полный магнитный поток, сцеплённый со всеми витками катушки. При произвольном расположении катушки относительно магнитного поля

где круговая частота ω=2πn. Подставив ω в (1), получим

Пример Однослойная длинная катушка содержит N=300 витков, плотно прилегающих друг к другу. Определите индуктивность катушки, если диаметр проволоки d=0,7 мм (изоляция ничтожной толщины) и она намотана на картонный цилиндр радиусом r=1 см.

Дано: N=300; d=0,7 мм=7∙10 -4 м; r=1 см=10 -2 м.

Решение . Индуктивность катушки

где Ф – полный магнитный поток, сцепленный со всеми витками катушки; I — сила тока в катушке.

Учитывая, что полный магнитный поток

(N-число витков катушки; В – магнитная индукция; S – площадь поперечного сечения катушки); магнитная индукция в катушке без сердечника

Энергия магнитного поля

0 – магнитная постоянная; ℓ- длина катушки), длина катушки

(d-диаметр проволоки; витки вплотную прилегают друг к другу), площадь поперечного сечения катушки

Получим осле подстановки записанных выражений в формулу (1) искомую индуктивность катушки:

Энергия магнитного поля

Пример Первичная обмотка понижающего трансформатора с коэффициентом трансформации k=0,1 включена в сеть с источником переменного напряжения с ЭДС ε1 =220 В. Пренебрегая потерями энергии в первичной обмотке, определите напряжение U2 на зажимах вторичной обмотки, если её сопротивление R2 =5 Ом и сила тока в ней I2 =2А.

Решение . В первичной обмотке под действием переменной ЭДС ε1 возникает переменный ток I1. создающий в сердечнике трансформатора переменногый магнитный поток Ф, который пронизывает вторичную обмотку. Согласно закону Ома, для первичной обмотки

Энергия магнитного поля

где R1 – сопротивление первичной обмотки. Падение напряжения I1 R1 при быстропеременных полях мало по сравнению с ε1 и ε2. Тогда можем записать:

ЭДС взаимной индукции, возникающая во вторичной обмотке,

Из выражений (1) и (2) получаем

Энергия магнитного поля,

где Энергия магнитного поля— коэффициент трансформации, а знак «-» показывает, что ЭДС в первичной и вторичной обмотках противоположны по фазе. Следовательно, ЭДС во вторичной обмотке

Напряжение на зажимах вторичной обмотки

Пример Соленоид без сердечника с однослойной обмоткой из проволоки диаметром d=0,4 мм имеет длину ℓ=0.5 м и поперечное сечение S=60см 2. За какое время при напряжении U=10 В и силе тока I=1,5 А в обмотке выделится количество теплоты, равное энергии поля внутри соленоида? Поле считать однородным.

Дано: d=0,4 мм=0,4∙10 -4 м; ℓ=0,5 м; S=60см 2 =6∙10 -3 м 2 ; I=1,5А; U=10В; Q=W.

Решение . При прохождении тока I при напряжении U в обмотке за время t выделяется теплота

Энергия поля внутри соленоида

где Энергия магнитного поля(N – общее число витков соленоида). Если витки вплотную прилегают друг к другу, то ℓ=Nd, откуда Энергия магнитного поля. Подставив выражение для В иN в (2), получаем

Согласно условию задачи, Q=W. Приравняв выражение (1) и (3),найдём искомое время:

Энергия магнитного поля

Пример Катушка без сердечника длиной ℓ=50 см содержит N=200 витков. По катушке течёт ток I=1А. Определите объёмную плотность энергии магнитного поля внутри катушки..

Решение . Объёмная плотность энергии магнитного поля (энергия единицы объёма)

где Энергия магнитного поля— энергия магнитного поля (L — индуктивность катушки); V=Sℓ- объём катушки (S — площадь катушки; ℓ- длина катушки).

Магнитная индукция поля внутри соленоида с сердечником с магнитной проницаемостью μ равна

Энергия магнитного поля.

Полный магнитный поток, сцепленный со всеми витками соленоида,

Энергия магнитного поля.

Учитывая, что Ф=LI, получаем формулу для индуктивности соленоида:

Подставив выражение (2) в формулу (1) с учётом того, что Энергия магнитного поля, найдём искомую объёмную плотность энергии магнитного поля внутри катушки:

Энергия магнитного поля

Ответ: ω=0,1 Дж/м 3 .

Энергия магнитного поля. Магнитное поле обладает энергией

Магнитное поле обладает энергией. Чтобы убедиться в этом, рассмотрим электрическую цепь, содержащую соленоид, имеющий индуктивность и сопротивление (рис. 6.6). При размыкании ключа К ток не сразу падает до нуля. В течение некоторого времени он продолжает течь, поддерживаемый возникающей в катушке электродвижущей силой самоиндукции, и при этом на сопротивлении выделяется тепло, согласно закону Джоуля–Ленца. Возникает вопрос, за счет каких запасов энергии выделяется тепло, ведь цепь разомкнута, и внешний источник отключен.

При уменьшении тока в цепи уменьшается и индукция магнитного поля. Поэтому можно, по-видимому, говорить об энергии электрического тока или энергии магнитного поля, создаваемого током. В случае постоянных токов нельзя однозначно определить, где локализована эта энергия. Ответ на этот вопрос можно дать, изучая переменные магнитные поля или электромагнитные волны. В электромагнитных волнах переменные магнитные поля могут существовать без токов, их поддерживающих. Так как электромагнитные волны переносят энергию, можно заключить, что энергия сосредоточена в магнитном поле.

Найдем величину энергии магнитного поля. Из закона сохранения энергии следует, что, когда ток прекратится, магнитное поле исчезнет, и вся энергия магнитного поля перейдет в тепловую энергию. Согласно закону Джоуля–Ленца, за малое время на сопротивлении R выделится количество теплоты . По закону Ома ток I равен

С учетом этого равенства выделившееся количество теплоты можно записать в виде:

в этом выражении так как ток убывает, а выделяющаяся теплота . Зависимость магнитного потока от силы тока можно представить графически (рис. 6.7). Очевидно, что количество теплоты, выделившейся за время . равно первоначальному запасу магнитной энергии и определяется площадью треугольника, составленного прямой . прямой и осью . Эта площадь равна . Таким образом, энергия магнитного поля, создаваемого током I в катушке с индуктивностью L. равна

Сравните выражение для магнитной энергии, запасенной в катушке индуктивности, с выражением для энергии электрического поля, запасенной в конденсаторе:

Энергия электрического поля в конденсаторе пропорциональна квадрату заряда, энергия магнитного поля, запасенная в катушке индуктивности, пропорциональна квадрату силы тока, то есть зависит от скорости движения зарядов. Напомним, что магнитное поле создается движущимися зарядами.

Работа индукционного тока сопровождается нагреванием проводником за счет энергии магнитного поля, которое не может исчезнуть бесследно. Соленоид, таким образом, служит своеобразным резервуаром энергии, значение которой вычисляется по формуле

Энергию магнитного поля можно выразить через величины, характеризующие само поле. Сделаем это для магнитного поля, создаваемого током в длинном соленоиде. В этом случае . . то есть . Подставив эти формулы в (6.4), получим

Так как магнитное поле внутри соленоида является однородным, то плотность энергии магнитного поля, запасенной в соленоиде, равна энергии, деленной на объем соленоида:

Определим энергию магнитного поля соленоида. Обычный лабораторный соленоид длиной 10 см. площадью поперечного сечения 75 см 2 и числом витков, намотанных в несколько слоев, равным 3 400, обладает индуктивностью . Сопротивление такого соленоида 50 Ом. При использовании 6-вольтной батарейки установится ток . Запасенная в соленоиде магнитная энергия равна Это небольшая энергия. Однако эта энергия пропорциональна квадрату силы тока и может достигать больших значений. Так, например, в электромагнитах, используемых для исследований, магнитная индукция при максимальном токе составляет обычно от 1 до 1,5 Тл. Магнитная проницаемость железа достигает значений в сотни и тысячи единиц, поэтому в электромагните большая часть энергии сосредоточена в зазоре между полюсами электромагнита. Если объем зазора составляет 0,2 ,то запасенная энергия

Это уже немалая энергия! Если, без специальных мер предосторожности, быстро разомкнуть цепь электромагнита, то при мгновенная мощность составит Р = 1,8 МВт.

Рассмотрим два неподвижных контура 1 и 2, расположенных достаточно близко друг к другу (рис. 6.8). Будем полагать, что среда является неферромагнитной. Если в контуре 1 течет ток силой, то он создает через контур 2 магнитный поток, пропорциональный :

Аналогично, если в контуре 2 течет ток силой . он создает магнитный поток через контур 1:

Коэффициенты пропорциональности и называют взаимной индуктивностью контуров. Из (6.6) и (6.7) видно, что взаимная индуктивность численно равна магнитному потоку через один из контуров при единичном токе в другом контуре. Коэффициенты и зависят от формы, размеров, взаимного расположения контуров, а также от магнитных свойств среды, окружающей контуры.

Можно показать, что при отсутствии ферромагнетиков коэффициенты и одинаковы: . Это свойство называется теоремой взаимности. Теорема взаимности позволяет не делать различия между и . а говорить просто о взаимной индуктивности двух контуров. Согласно теореме взаимности, если в контурах текут одинаковые токи, то магнитный поток через контур 1, созданный током в контуре 2, равен магнитному потоку через контур 2, созданному током в контуре 1.

Если контуры неподвижны и ферромагнетиков вблизи них нет, то при изменении силы тока в одном из контуров в другом контуре возникает электродвижущая сила индукции. Это явление называется явлением взаимной индукции. Согласно закону электромагнитной индукции электродвижущие силы индукции, возникающие в контурах 1 и 2, равны соответственно

Если в каком-либо контуре, например, в контуре 1 есть внешний источник электродвижущей силы . то с учетом явления самоиндукции полную электродвижущую силу, действующую в этом контуре, можно записать следующим образом:

где – индуктивность контура 1. Если сопротивление контура 1 равно . то, согласно закону Ома, сила тока в этом контуре будет равна

Аналогичное соотношение можно записать и для определения силы тока во втором контуре.

В отличие от индуктивности, которая всегда положительная, взаимная индуктивность величина алгебраическая (в частности, равная нулю). Из рис. 6.8 видно, что знак магнитного потока при данном направлении тока будет зависеть от выбора положительной нормали к поверхности, ограниченной контуром 2. Положительные направления для токов (и электродвижущих сил) в обоих контурах можно выбрать произвольно. При заданном направлении тока направление положительной нормали к поверхности контура определяется правилом правого винта. Если эти направления выбраны, величину нужно считать положительной, когда при положительных токах магнитные потоки взаимной индукции через контуры оказываются также положительными, то есть совпадают по знаку с потоками самоиндукции.

Другими словами, . если при положительных токах в обоих контурах они «подмагничивают» друг друга, в противном случае . В частных случаях можно заранее так установить положительные направления обхода контуров, чтобы получить желательный нам знак величины .

При отсутствии устойчивого сигнала сотовой связи телефон становится более чувствительным к электромагнитным помехам. Происходит это из-за изменения сигнала вследствие явления взаимоиндукции. Пример такого эффекта – ухудшение приема телефона при приближении к телевизору или радиоприемнику.

6.6. Примеры на применение явления
электромагнитной индукции

Энергия магнитного поля тока

§ 16 ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи эта энергия переходит в другие виды энергии.

То, что для создания тока необходимо затратить энергию, т. е. необходимо совершить работу, объясняется тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое создается в проводнике благодаря источнику тока. Для того чтобы сила тока стала равной /, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток исчезает, и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обнаруживается, например, по мощной искре, возникающей при размыкании цепи с большой индуктивностью.

Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле

Энергия магнитного поля

Энергия магнитного поля выражена здесь через характеристику проводника L и силу тока в нем /. Но эту же энергию можно выразить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропорциональна квадрату магнитной индукции: Энергия магнитного поля. подобно тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля Энергия магнитного поля .

Магнитное поле. созданное электрическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

Энергия магнитного поля
1. Почему для создания тока источник должен затратить энергию!
2. Чему равна энергия магнитного поля!

Мякишев Г. Я. Физика. 11 класс. учеб. для общеобразоват. учреждений. базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. — 17-е изд. перераб. и доп. — М. Просвещение, 2008. — 399 с. ил.

Материалы по физике онлайн. задачи и ответы по классам, планы конспектов уроков по физике скачать

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Энергия магнитного поля

Энергия магнитного поля показывает, какую работу затратил электрический ток в проводнике (катушке индуктивности) на создание этого магнитного поля. Естественно эта энергия будет напрямую зависеть от индуктивности проводника, вокруг которого магнитное поле создается.

Оказывается, энергия магнитного поля равна половине про­изведения индуктивности цепи на квадрат силы тока, т. е.

Энергия магнитного поля

Сравнивая эту формулу с формулой для кинетической энергии, нетрудно убедиться в том, что они очень похожи одна на другую

Энергия магнитного поля

Эта формула говорит нам о том, что кинетическая энергия прямо пропорциональна массе движущегося предмета и квад­рату скорости его движения.

Все это не имеет, конечно, прямого отношения к электро­технике. Однако, мы уже несколько раз пользовались механи­ческими аналогиями при рассмотрении электромагнитных яв­лений, сравнивая энергию магнитного поля с кинетической энергией, явление самоиндукции — с инерцией и, наконец, ин­дуктивность с механической массой. Из сопоставления этих формул следует также, что силе тока в механике соответствует скорость движения.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Видеокурс «Черчение схем в программе sPlan 7»

Энергия магнитного поля

Если Вы хотите научиться чертить электрические схемы, создавать рисунки и иллюстрации (например при оформлении курсовых, дипломных, при публикации на сайте и т.д.) быстро и профессионально, то у меня для Вас есть отличная новость!

Вы можете совершенно БЕСПЛАТНО получить полноценный курс по черчению схем и созданию рисунков в программе sPlan 7.0 !

Видеокурс «Программирование микроконтроллеров для начинающих»

Энергия магнитного поля

Если Вы хотите из новичка превратиться в профессиноала, стать высококлассным, конкурентноспособным и грамотным специалистом в области самого перспективного направления микроэлектроники, тогда изучите новый видокурс по микроконтроллерам!

Уверяю такого еще нет нигде!

В результате вы научитесь с нуля не тольно разрабатывать собственные устройства, но и сопрягать с ними различную переферию!

Энергия магнитного поля

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *