Энергия гармонических колебаний

Энергия гармонических колебаний

Кинетическая и потенциальная энергия гармонических колебаний

Кинетическая энергия тела, совершающего гармонические колебания :

Энергия гармонических колебаний

Потенциальная энергия тела, совершающего гармонические колебания (под действием квазиупругой силы):

Энергия гармонических колебаний

Энергия гармонических колебаний

Энергия гармонических колебаний

Полная энергия гармонических колебаний

Энергия гармонических колебаний

При свободных колебаниях колебательная система получает энергию только в начальный момент времени, а далее энергия системы, а с ней и амплитуда колебаний не меняются. При движении тела кинетическая и потенциальная энергия переходят друг в друга. Когда отклонение системы от положения равновесия максимально, потенциальная энергия максимальна, а кинетическая равна нулю. При прохождении положения равновесия потенциальная энергия достигает минимума, а кинетическая энергия (а с ней и скорость. импульс тела) максимальна.

Примеры решения задач

Материальная точка массой 10 г колеблется по закону Энергия гармонических колебаний. Найти полную энергию колеблющейся точки.

Полная энергия колеблющейся точки определяется соотношением:

Энергия гармонических колебаний

Из уравнения колебаний точки амплитуда колебаний Энергия гармонических колебаний м, циклическая частота Энергия гармонических колебаний рад/с.

Переведем единицы в систему СИ: масса материальной точки Энергия гармонических колебаний г Энергия гармонических колебаний кг.

Энергия гармонических колебаний.

Характерной чертой гармонического осциллятора является то, что средние значения кинетической и потенциальной энергии осциллятора равны друг другу и каждое из них составляет половину полной энергии.

Кинетическую энергия колеблющегося тела можно определить, если в выражение для кинетической энергии Энергия гармонических колебаний подставить скорость Энергия гармонических колебаний :

Энергия гармонических колебаний Потенциальная энергия, обусловленная упругой силой, определяется как эквивалент работы, необходимой для смещения тела на расстояние x от положения равновесия, и равна:

Энергия гармонических колебаний Энергия гармонических колебаний .

Учитывая, что Энергия гармонических колебаний. получим:

Полная механическая энергия осциллятора равна: Энергия гармонических колебаний .

Энергия гармонических колебаний Энергия гармонических колебаний

Из выражений (1) и (2) видно, что кинетическая и потенциальная энергии изменяются со временем, причем, когда кинетическая энергия максимальна, потенциальная энергия обращается в нуль, и наоборот (рис.23.1). Период колебания кинетической и потенциальной энергий вдвое меньше периода колебаний системы. Полная механическая энергия гармонического колебания постоянна и пропорциональна квадрату амплитуды и квадрату частоты. Постоянство полной механической энергии обусловлено отсутствием потерь энергии на совершение работы против сил сопротивления.

Тема 19. Затухающие и вынужденные колебания. Сложение колебаний

Реально свободные колебания под действием сил сопротивления всегда затухают. Объясняется это действием сил, тормозящих движение, например, сил трения в месте подвеса при колебаниях маятника, или силой сопротивления среды. В этом случае энергия механических колебаний постепенно расходуется на работу против этих сил. Поэтому свободные колебания под действием сил сопротивления всегда затухают.

Пусть точка совершает линейное гармоническое колебание в вязкой среде. Из опыта известно, что сила сопротивления среды зависит от скорости и направлена в сторону, противоположную скорости. При малых скоростях: Энергия гармонических колебаний. где r – постоянная величина, называемая коэффициентом сопротивления среды. Уравнение колебаний: Энергия гармонических колебаний .

Введем обозначения: Энергия гармонических колебаний. тогда дифференциальное уравнение затухающего колебания:

Энергия гармонических колебаний где Энергия гармонических колебаний – коэффициент затухания, w0 – собственная частота колебания. При отсутствии трения Энергия гармонических колебаний =0, уравнение примет вид уравнения для свободных незатухающих колебаний. В результате решения уравнения (1) получим зависимость смещения х от времени, то есть уравнение затухающего колебательного движения: Энергия гармонических колебаний (2)

Выражение Энергия гармонических колебаний называется амплитудой затухающего колебания. Амплитуда уменьшается с течением времени и тем быстрее, чем больше коэффициент затухания. Огибающая на графике зависит от Энергия гармонических колебаний. Чем она больше, тем круче огибающая, то есть колебания быстрее затухают (рис.24.1).

Путем подстановки функции (2) и ее производных по времени в уравнение (1), можно найти значение угловой частоты: Энергия гармонических колебаний. Период затухающих колебаний равен: Энергия гармонических колебаний .

Наглядной характеристикой затухания является отношение значений двух амплитуд, соответствующих промежутку времени в один период. Это отношение называют декрементом затухания Энергия гармонических колебаний. Энергия гармонических колебаний .

Его натуральный логарифм есть безразмерная величина, называемая логарифмическим декрементом затухания: Энергия гармонических колебаний .

Промежуток времени Энергия гармонических колебаний. в течение которого амплитуда затухающего колебания убывает в е раз, называют временем релаксации .

Тогда выражение для логарифмического декремента затухания примет вид: Энергия гармонических колебаний или Энергия гармонических колебаний .

Логарифмический декремент затухания – величина, обратная числу колебаний N, по истечении которых амплитуда колебаний уменьшается в е раз.

Энергия гармонических колебаний

для кинетической и потенциальной энергии механического маятника, можно сделать следующие выводы:

1. Полная механическая энергия тела не изменяется при колебаниях:
2. Частота колебаний кинетической и потенциальной энергии в 2 раза больше частоты колебаний маятника.
3. Колебания кинетической и потенциальной энергии сдвинуты друг относительно друга по фазе на p (на полпериода). Когда кинетическая энергия достигает максимума, потенциальная — минимума (нуля) и наоборот. Энергия при колебаниях постоянно перекачивается из потенциальной в кинетическую и обратно.

В случае электрических колебаний энергия в конуре представляет собой сумму энергии электрического поля, запасенной между обкладками конденсатора, и энергии магнитного поля, запасенной в катушке с индуктивностью. Вычислим обе составляющие.

Сравнивая эти формулы, можно сделать следующие выводы:

1. Полная энергия в контуре остается неизменной:

2. Частота колебаний энергий в 2 раза превосходит частоту колебаний заряда и тока в контуре.
3. Электрическая и магнитная энергии сдвинуты по фазе на полпериода друг относительно друга; происходит непрерывное перекачивание энергии из одной формы в другую и обратно.

Поскольку в контуре происходят колебания электрической и магнитной энергий, электрический колебательный контур также называют электромагнитным.

Энергия гармонических колебаний

Гармонические колебания и их характеристики. Скорость, ускорение, энергия при гармоническом колебании

Колебаниями называются движения или процессы, которые характеризуются

определенной повторяемостью во времени. Колебательные процесс широко

распространены в природе и технике, например качания маятника часов, переменный

электрический ток и т.д. При колебательном движении маятника изменяется

координата его центра масс, в случае переменного тока колеблются напряжение и

ток в цепи. Физическая природа колебаний может быть разной поэтому различают

колебания механические, электромагнитные и другие. Однако различные

колебательные процессы описываются одинаковыми характеристиками и одинаковыми

уравнениями. Отсюда следует целесообразность единого подхода к изучению

колебаний различной физической природы. Например ,единый подход к

изучению механических и электромагнитных колебаний применялся английским

физиком Д. У. Релеем (1842-1919), а А.Г. Столетовым, русским

инженером-экспериментатором П.Н. Лебедевым (1866-1912). Большой вклад в

развитие теории колебаний внесли: Л.И. Мандельштам (1879-1944) и его ученики.

Колебания называются свободными (или собственными ), если

они совершаются за счет первоначально совершенной энергии при последующем

отсутствии внешних воздействий на колебательную систему (систему, совершающую

колебания). Простейшим типом колебаний являются гармонические колебания

— колебания, при которых колеблющаяся величина изменятся со временем по закону

синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам

1. Колебания встречающиеся в природе и технике, часто имеют характер, близкий

2. Различные периодические процессы (процессы, повторяющиеся через

равные промежутки времени) можно представить как наложение гармонических

Скорость и ускорение при гармонических колебаниях.

Согласно определению скорости, скорость – это производная от координаты по времени

Таким образом, мы видим, что скорость при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания скорости опережают колебания смещения по фазе на &#&60;/2 .

Величина — максимальная скорость колебательного движения (амплитуда колебаний скорости).

Следовательно, для скорости при гармоническом колебании имеем: . а для случая нулевой начальной фазы .

Согласно определению ускорения, ускорение – это производная от скорости по времени:

— вторая производная от координаты по времени. Тогда: .

Ускорение при гармоническом колебательном движении также изменяется по гармоническому закону, но колебания ускорения опережают колебания скорости на &#&60;/2 и колебания смещения на &#&60; (говорят, что колебания происходят в противофазе) .

Энергия гармонических колебаний

Энергия гармонических колебаний

Энергия гармонических колебаний Потенциальная энергия тела U. измеряется той работой, которую произведет возвращающая сила Энергия гармонических колебаний

Полная механическая энергия гармонически колеблющегося тела пропорциональна квадрату амплитуды колебания.

Энергия гармонического колебания

Все темы данного раздела:

Основные единицы СИ
В настоящее время общепринятой является Международная система единиц — СИ. Эта система содержит семь основных единиц: метр, килограмм, секунда, моль, ампер, кельвин, кандела и две дополнительные —

I. МЕХАНИКА
Механика — наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними. Под механическим движением понимают изменение с течением времени взаимного пол

Нормальное и касательное ускорения
Рис. 1.4 Движение материальной точки по криволинейной траект

Законы Ньютона
Динамика — раздел механики, в котором изучается движение материальных тел под воздействием приложенных к ним сил. В основе механики лежат законы Ньютона. Первый закон Ньютона

Закон сохранения импульса
Рассмотрим вывод закона сохранения импульса на основе второго и третьего законов Ньютона.

Закон сохранения механической энергии
Рассмотрим замкнутую консервативную систему тел. Это означает, что на тела системы не действуют внешние силы, а внутренние силы по своей природе являются консервативными. Полной механическ

Соударения
Рассмотрим важный случай взаимодействия твёрдых тел — соударения. Соударением (ударом) называется явление конечного изменения скоростей твёрдых тел за весьма малые промежутки времени при их непо

Закон сохранения момента импульса
Рассмотрим изолированное тело, т.е. такое тело на которое не действует внешний момент сил. Тогда Mdt = 0 и из (4.5) следует d(Iw)=0, т.е. Iw=const. Если изолированная система состоит

Гироскоп
Гироскопом называется симметричное твёрдое тело, вращающееся вокруг оси, совпадающей с осью симметрии тела, проходящей через центр масс, и соответствующей наибольшему собственному моменту инерции.

Общая характеристика колебательных процессов. Гармонические колебания
Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени. В технике устройства, использующие колебательные процессы могут выполнять оп

Колебания пружинного маятника
Рис. 6.1 Укрепим на конце пружины тело массой m, которое мож

Сложение гармонических колебаний одинакового направления
Решение ряда вопросов, в частности, сложение нескольких колебаний одинакового направления, значительно облегчается, если изображать колебания графически, в виде векторов на плоскости. Полученная та

Затухающие колебания
В реальных условиях в системах, совершающих колебания, всегда присутствуют силы сопротивления. В результате система постепенно расходует свою энергию на выполнение работы против сил сопротивления и

Вынужденные колебания
В реальных условиях колеблющаяся система постепенно теряет энергию на преодоление сил трения, поэтому колебания являются затухающими. Чтобы колебания были незатухающими, необходимо каким-то образом

Упругие (механические) волны
Процесс распространения возмущений в веществе или поле, сопровождающийся переносом энергии, называется волной. Упругие волны — процесс распространения в упругой среде механически

Интерференция волн
Интерференцией называется явление наложения волн от двух когерентных источников, в результате которого происходит перераспределение интенсивности волн в пространстве, т.е. возникают интерференци

Стоячие волны
Частным случаем интерференции является образование стоячих волн. Стоячие волны возникают при интерференции двух встречных когерентных волн с одинаковой амплитудой. Такая ситуация может возни

Эффект Допплера в акустике
Звуковыми волнами называют упругие волны с частотами от 16 до 20000 Гц, воспринимаемые органами слуха человека. Звуковые волны в жидких и газообразных средах являются продольными. В твёрды

Основное уравнение молекулярно-кинетической теории газов
Рассмотрим в качестве простейшей физической модели идеальный газ. Идеальным называется такой газ, для которого выполняются следующие условия: 1) размеры молекул настолько малы, ч

Распределение молекул по скоростям
Рис.16.1 Предположим, чтонам удалось измерить скорости всех

Барометрическая формула
Рассмотрим поведение идеального газа в поле силы тяжести. Как известно, по мере подъёма от поверхности Земли давление атмосферы уменьшается. Найдём зависимость давления атмосферы от высоты

Распределение Больцмана
Выразим давление газа на высотах h иh0 через соответствующее число молекул в единице объёмап ип0, считая, что на разных высотахT=const: P =

Первое начало термодинамики и его применение к изопроцессам
Первое начало термодинамики — это обобщение закона сохранения энергии с учётом тепловых процессов. Его формулировка: количество теплоты, сообщённое системе, расходуется на выполнение работы

Число степеней свободы. Внутренняя энергия идеального газа
Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при её движении в п

Адиабатный процесс
Адиабатным называется процесс, происходящий без теплообмена с окружающей средой. В адиабатном процессеdQ = 0, поэтому первое начало термодинамики применительно к этому процессу прин

Обратимые и необратимые процессы. Круговые процессы (циклы). Принцип действия тепловой машины
Обратимыми называются такие процессы, которые удовлетворяют следующим условиям. 1. После прохождения этих процессов и возвращения термодинамической системы в исходное состояние в

Идеальная тепловая машина Карно
Рис. 25.1 В 1827 г. французский военный инженер С. Карно, ре

Второе начало термодинамики
Первое начало термодинамики, которое является обобщением закона сохранения энергии с учётом тепловых процессов, не указывает на направленность протекания различных процессов в природе. Так, первое

Невозможен процесс, единственным результатом которого была бы передача теплоты от холодного тела к горячему.
В холодильной машине теплота передаётся от холодного тела (морозильной камеры) в более нагретую окружающую среду. Казалось бы, что это противоречит второму началу термодинамики. На самом деле проти

Энтропия
Введём теперь новый параметр состояния термодинамической системы — энтропию, которая принципиально отличается от других параметров состояния направленностью своего изменения. Элементарное измене

Дискретность электрического заряда. Закон сохранения электрического заряда
Источником электростатического поля служит электрический заряд — внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия.

Энергия электростатического поля
Найдём вначале энергию заряженного плоского конденсатора. Очевидно, что эта энергия численно равна работе, которую нужно совершить, чтобы разрядить конденсатор.

Основные характеристики тока
Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила тока численно равна заряду, прошедшему через поперечное сечение проводника за единицу

Закон Ома для однородного участка цепи
Однородным называется участок цепи, не содержащий источника ЭДС. Ом экспериментально установил, что сила тока на однородном участке цепи пропорциональна напряжению и обратно пропорц

Закон Джоуля — Ленца
Джоуль и независимо от него Ленц экспериментально установили, что количество теплоты, выделенной в проводнике с сопротивлением R за время dt, пропорционально квадрату силы тока, сопротивлен

Правила Кирхгофа
Рис. 39.1 Для расчёта сложных цепей постоянного тока применя

Контактная разность потенциалов
Если два разнородных металлических проводника привести в контакт, то электроны получают возможность переходить из одного проводника в другой и обратно. Равновесное состояние такой системы

Эффект Зеебека
Рис. 41.1 В замкнутой цепи из двух разнородных металлов на г

Эффект Пельтье
Второе термоэлектрическое явление — эффект Пельтъе состоит в том, что при пропускании электрического тока через контакт двух разнородных проводников в нём происходит выделение или поглощени




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *