Динамика популяции

Динамика популяции

Динамика популяции — раздел популяционной эколо­гии, изучающий численность особей популяции и механиз­мы ее регуляции. Жизнь популяции проявляется в ее дина­мике. К основным признакам динамики относятся:

— численность популяции — общее число особей на дан­ной территории или в данном объеме (например, воды);

— плотность популяции — это среднее число особей на единицу площади или объема;

рождаемость (плодовитость) — число новых особей, появившихся за единицу времени в результате размноже­ния;

— смертность — число особей, погибших за определен­ный период;

— прирост популяции — разница между рождаемостью и смертностью;

— темп роста — средний прирост за единицу времени. Изучение этих демографических признаков необходимо

для выявления законов жизни популяции, а следователь­но, и основ стабильности экосистемы в целом.

Численность популяции никогда не бывает постоянной и зависит от соотношения интенсивности размножения (пло­довитости) и смертности. В процессе размножения проис­ходит рост популяции, смертность же приводит к сокраще­нию ее численности.

Рождаемость характеризует частоту появления новых особей в популяции. Различают рождаемость абсолютную и удельную, максимальную и экологическую.

Абсолютная рождаемость — число особей, появивших­ся в популяции за единицу времени. Удельная рождае­мость выражается в числе родившихся особей на число особей в популяции в единицу времени. Например, для по­пуляции человека показателем удельной рождаемости обычно служит число детей, родившихся в год на 1000 че­ловек (таблица 4.2).

Максимальная рождаемость определяется числом самок в популяции и их способностью производить определенное число детенышей в единицу времени (т.е. физиологической плодовитостью). Обычно рождаемость ниже максимальной, т.к. она соответствует сложившимся экологическим услови­ям и называется экологической.

Таблица 4.2 Рождаемость и смертность в городе Смоленске

Экологическая рождаемость дает представление о скорос­ти размножения популяции при фактически сложившихся условиях жизни. Например, взрослая самка трески выме­тывает миллионы икринок, из которых в среднем доживают до взрослого состояния лишь 2 особи. В результате гибели по разным причинам (болезни, паразиты, хищники и др.) яиц, гусениц и куколок на свет появляется лишь 0,32% взрослых бабочек от числа отложенных яиц.

Численность и плотность популяции зависят также от ее смертности. Смертность популяцииэто количество особей, погибших за определенный период. Она, как и пло­довитость, изменяется в зависимости от условий среды, возраста и состояния популяции и выражается в процентах к начальной или, чаще, к средней величине ее. У большин­ства видов смертность в раннем возрасте всегда выше, чем у взрослых особей. У многих рыб до взрослой фазы доживает 1—2% от выметанной икры; у насекомых — 0,3—0,5% от отложенных яиц. Смертность, как и рождаемость, может быть абсолютной и удельной (таблица 4.2).

Выживаемостьсредняя для популяции вероятность сохранения особей каждого поколения за определенный промежуток времени. Различают три типа смертности или, как их чаще называют, «кривые выживаемости». Каждый вид имеет свою кривую выживаемости (рис. 11).

Первая кривая — сильно выпуклая. Выпуклость кривой характеризует повышение смертности к концу жизни, ос­тававшуюся до этого низкой. Такой тип кривой характерен для насекомых, личинки которых обитают в почве, воде, древесине или других местах с благоприятными условия­ми. Он характерен также для проходных рыб, нерестую-щихся один раз в жизни, для многих видов крупных жи­вотных и для человека

Вторая кривая — сильно вогнутая. Вогнутость кривой ха­рактерна для видов, смертность у которых очень высока на ранних стадиях жизни. Этот тип кривой свойственен больши­нству растений и животных. Максимальная гибель многих растений происходит в стадии прорастания семян или всхо­дов, а животных — в личиночной фазе или молодом возрасте, например, у устриц, рыб, птиц, многих беспозвоночных.

Третий тип кривой — промежуточный, почти прямая линия, характерна для видов, у которых смертность мало изменяется с возрастом и остается более или менее одина-

ковой в течение всей жизни данной группы. Такая смерт­ность встречается очень редко и только у популяций, посто­янно находящихся в оптимальных условиях, например, та­ких, как гидра пресноводная.

Динамика популяции

Рис. 11. Три типа кривых выживания: 1 — человек, 2 — рыбы, 3 — гидра

Форма кривой выживания связана со степенью заботы о потомстве и способами защиты молоди. Так, кривые выжи­вания пчел и дроздов, которые заботятся о потомстве, менее вогнуты, чем кривые выживания кузнечиков или сардин, не заботящихся о потомстве.

В замкнутых популяциях (в которых нет миграций) ско­рость изменения численности определяется только соотно­шением рождаемости и смертности. Если рождаемость вы­ше смертности, то удельная скорость роста положительная. Если же смертность выше рождаемости, то удельная ско­рость становится отрицательной и численность популяции начинает убывать. Рождаемость и смертность, т. е. динами­ка численности, напрямую связаны с возрастной и половой структурами популяции.

Популяция регулирует свою численность и приспосаб­ливается к изменяющимся условиям среды путем обновле­ния и замещения особей. Особи появляются в популяции благодаря рождению и миграции, а исчезают в результате смерти и эмиграции.

При сбалансированной интенсивности рождаемости и смертности формируется стабильная популяция, в которой смертность компенсируется приростом и численность ее, а также ареал поддерживаются на одном уровне.

Популяции, в которых рождаемость превышает смерт­ность и численность популяции растет так быстро, что насту­пает вспышка массового размножения, называются расту­щими. Это особенно характерно для мелких животных. При­мером может служить увеличение численности популяции колорадского жука (Leptinotarsa decemlineata), быстро рас­селившегося на территории от Франции до Украины, Бело­руссии, Смоленской и Псковской областей. Примером расту­щей популяции является элодея, завезенная из Америки, появившаяся в 1836 году в Ирландии, и проникшая уже в 1885 году в бассейн Оки. В последние десятилетия наметил­ся рост популяции канареечного вьюрка (Serinus canaria), зе­леной пеночки (Phylloscopus trochiloides), чайки обыкновен­ной (Larus ridibundus), зайца-русака и других видов.

Однако при бурном развитии популяции наступает пере­уплотнение, что ведет к ухудшению условий существова­ния. А это приводит к резкому возрастанию смертности, в результате чего численность популяции начинает сокра­щаться. Если смертность превышает рождаемость, популя­ция становится сокращающейся. Так произошло, например, с элодеей и домовым воробьем (Passer domesticus) в умерен­ной зоне. В сокращении численности популяций многих животных часто повинен человек; например, таких, как со­боль (Martes zibellina), бобр (Castor fiber), зубр (Bison bona-sus), дрофа (Otis tarba) и других. Однако сокращаться безгра­нично популяция также не может. При определенном уров­не численности интенсивность смертности начинает падать, а плодовитость повышается. В итоге сокращающаяся попу­ляция превращается в растущую.

В природе численность популяций всегда испытывает ко­лебания. Амплитуда и период этих колебаний зависят от ви­да и от условий среды обитания. Различают непериодичес­кие (нерегулярные, хаотические) и периодические (регуляр-

ные, циклические) колебания численности популяций. К не­периодическим колебаниям численности, а соответственно и плотности популяции, относятся вспышки массового размножения непарного шелкопряда (Ocneria dispar) в юж­ной и юго-восточной частях России в 1879 году, рыжего сос­нового пилильщика (Neodiprion sertif er) в Ленинградской и Смоленской областях, в Белоруссии с 1958 по 1962 годы. Резкий подъем численности наблюдается у популяций, ока­завшихся на новом местообитании. Например, массовое размножение кроликов и разрастание зарослей кактуса опунции в Австралии, колорадского картофельного жука (Leptinotarsa decemlineata) и чайки обыкновенной (Larus ridibundus) в последние годы в Смоленской области.

Периодические колебания повторяются через равные промежутки времени, обычно в течение нескольких лет или одного сезона. Например, циклические изменения с подъемом численности в среднем через 4 года зарегистриро­ваны у леммингов (Dicrostohyx), полярной совы (Nyctea scandiaca) и других животных тундры. Сезонные колеба­ния численности характерны для многих насекомых, мы­шевидных грызунов, птиц. На периодические колебания численности популяции одним из первых обратил внима­ние русский генетик С.С. Четвериков (1880—1959), иссле­довавший изменчивость в природных популяциях. Колеба­ния численности особей, составляющих популяцию, полу­чили название популяционных волн (рис. 12).

Динамика популяции

Рис. 12. Популяционные волны

Численность и плотность — основные параметры, кото­рые выражают количественные характеристики популя­ции как целого.

Каждой популяции свойственен так называемый биоти­ческий потенциалспособность к увеличению численнос­ти за данный промежуток времени. У разных организмов биотический потенциал не одинаков. Примером организмов с высоким потенциалом размножения являются:

— бактерии Bacillus coli, размножающиеся простым де­лением каждые 20 минут, которые при наличии условий для реализации биотического потенциала, могли бы осво­ить все пространство земного шара за 36 часов;

— гриб-дождевик, приносящий до 7,5 млрд спор, уже во втором поколении освоил бы всю Землю.

Крупным организмам с низким потенциалом размноже­ния потребовалось бы для этого несколько десятилетий или столетий.

Таким образом, численность каждого вида при благоп­риятных условиях способна расти по так называемой экспо­ненциальной (логарифмической) кривой. Рост численнос­ти в геометрической прогрессии называетсяэкспоненци­альным ростом. График зависимости численности популя­ции от времени при экспоненциальном росте представляет собой кривую, напоминающую по форме латинскую букву J, называемую экспонентой. Эта J-образная кривая показы­вает, что в ходе роста популяции ее численность увеличива­ется с возрастающей скоростью (рис. 13).

Динамика популяции

Рис. 13. Экспоненциальная кривая роста популяции

Величина изменения численности за единицу времени на­зывается абсолютной скоростью роста численности. Эта ве-

личина зависит от численности популяции: например, из гра­фика на рис. 14 видно, что чем больше численность, тем боль­ше абсолютная скорость роста. Удельная скорость роста чис­ленности — это скорость прироста на единицу особи — эта величина и отражает биотический потенциал.

Экспоненциальный рост в реальных условиях наблюдает­ся, когда популяция растет в условиях избытка ресурсов (пи­щи, места для размножения), отсутствия конкурентов и не ис­пытывает воздействия неблагоприятных факторов. В лабора­торных условиях экспоненциальный рост можно наблюдать у популяций микроорганизмов (дрожжей, бактерий, хлореллы) в начальной фазе их роста. В природе экспоненциальный рост наблюдается при вспышке численности грызунов, саранчи, непарного шелкопряда и других насекомых. Экспоненциаль­но может расти численность популяций, вселенных в новую местность, где у них много пищи и мало врагов. Классическим примером такого роста является рост численности кроликов, завезенных в Австралию. Примером экспоненциального роста можно считать размножение микроорганизмов в загрязнен­ных органическими и биогенными веществами водоемах.

Динамика популяции

Рис. 14. Рост населения мира (млн чел.)

Близок к экспоненциальному типу рост населения попу­ляции человека в настоящее время (рис. 15). Он обусловлен прежде всего резким снижением смертности в детском воз­расте.

Естественный рост популяции никогда не реализуется в форме экспоненциальной кривой. В крайнем случае, если это и происходит, то в течение относительно короткого от­резка времени (как в приведенных выше примерах), после чего скорость роста численности снижается. Объясняется это тем, что не только в природных, но и в оптимальных экспериментальных условиях рост численности ограничен комплексом факторов внешней среды и реально складыва­ется как результат соотношения меняющихся значений рождаемости и смертности.

Рост численности популяции замедляется по мере увели­чения ее плотности, так как условия для роста и размноже­ния особей становятся менее благоприятными. Например, животным при высокой плотности популяции может не хва­тать пищи. Растения начинают затенять друг друга, или им не хватает влаги. По мере ухудшения условий удельная ско­рость роста снижается, и при некоторой плотности числен­ность популяции перестает расти. Эту предельную плотность, которой может достигнуть популяция в данных условиях, на­зывают емкостью среды. Если рост популяции ограничен ре­сурсами, то после достижения емкости среды численность по­пуляции колеблется возле некоторого среднего уровня и по­пуляция подчиняется правилам логистического роста.

Динамика популяции

Рис. 15. Логистическая кривая роста популяции

График изменения численности популяции при логисти­ческом росте представляет собой кривую, которая называ­ется логистической кривой и напоминает по форме латинс­кую букву S (рис. 15). При логистическом росте популяции ее численность некоторое время нарастает, но вскоре этот процесс начинает замедляться, и постепенно рост числен­ности практически прекращается. Для большинства попу­ляций и видов выживаемость отображается логистической кривой.

IV. Динамика популяций.

Динамика популяций – это процессы изменения ее основных биологических показателей (численности, биомассы, структуры) во времени в зависимости от экологических факторов. ДП – это приспособительный ответ на условия существования вида, одно из наиболее значимых биологических и экологических явлений, т.к. жизнь популяции проявляется в ее динамике.

Важным процессом динамики популяций является рост численности (или просто «рост популяции»), который происходит при освоении организмами новых мест обитаний или после перенесенной катастрофы. Характер роста бывает различным.

Рост популяций у любых видов, от бактерий до человека, имеет общие закономерности. Теоретически численность любого вида может расти бесконечно в силу того, что размножение обычно происходит в геометрической прогрессии. Число потомков, которое может оставить после себя одна особь, носит название биотический потенциал вида . Потомков может быть всего два, как при простом делении клетки надвое (бактерии, амебы, инфузории), а может быть – сотни миллионов (количество икринок, откладываемых за жизнь рядом плодовитых рыб, число мелких семян у многих древесных растений и т.п.).

Динамика роста популяции

Nt– число особей в моментt,

Nt-1- число особей в предыдущий момент,

B- число родившихся,

D- число погибших,

C- число иммигрантов,

E- число эмигрантов

Выделяют две основные формы кривых роста — чисто экспоненциальную (J-образную) и сигмоидную (S-образную).

Сигмоидная, или S-образная . кривая описывает ситуацию, при которой в новом для популяции местообитании ее плотность сначала возрастает медленно (лаг-фаза, соответствующая периоду адаптации к условиям), а затем быстро. По прошествии некоторого времени скорость роста замедляется и становится в конечном итоге нулевой: рождаемость полностью уравновешивается смертностью. Говорят, что кривая выходит на плато. Замедление роста популяции объясняется увеличением внутривидовой конкуренции за ресурсы, например, пищу или места гнездования. В результате по механизму отрицательной обратной связи повышается смертность особей и замедляется их размножение (меньший процент спаривающихся животных, рост числа вызванных стрессом выкидышей и т. п.).

Экспоненциальный рост без выхода на плато (J-образная кривая ) соответствует ситуации, при которой после начального адаптационного периода (лаг-фазы) численность особей резко возрастает, но затем рост внезапно прекращается, когда начинает проявляться отсутствовавшее прежде сопротивление среды. Такой рост популяции называют независимым от плотности, поскольку он ничем не сдерживается до последнего момента, за которым следует массовая гибель особей. Эта гибель в свою очередь может вызываться либо наступлением неблагоприятного сезона, либо окончанием сезона размножения самих организмов или их основных жертв.

Динамика популяции

Рис. 5 Типы кривых роста численности популяции (модели роста популяции):

а – J-образная; б – S-образная; K – поддерживающая емкость среды (максимальный размер популяции, которая может существовать определенном объеме и при регулярной подкормке).

Факторы динамики численности популяций.

Сдерживание роста популяций в природе происходит в результате действия целого ряда факторов. Их делят на две принципиально различные категории: модификаторы и регуляторы:

Факторы-модификаторы воздействуют на численность популяции односторонне, сами не испытывая никакого влияния с ее стороны. Это, прежде всего, абиотические явления: засухи, проливные дожди, наводнения, бури, низкие температуры и т.п. Рост и плодовитость особей подчиняется правилу оптимума, поэтому все отклонения от него изменяют (модифицируют) численность популяций в сторону уменьшения, а приближение к оптимуму стимулирует увеличение численности.

Факторы-регуляторы не только влияют на численность популяций, но и сами изменяют силу своего действия в зависимости от ее плотности. С падением численности воздействие регуляторов ослабевает, с возрастанием – усиливается. Возникает так называемая отрицательная обратная связь. которая способна сдерживать рост популяции. Следует отметить, что чрезмерный, неконтролируемый, рост численности в конечном итоге губителен для любого вида, т.к. может полностью истощить и подорвать ресурсы среды. В эволюции возникло множество механизмов регулирования размножаемости видов.

Факторы регуляторы в природе делятся на две группы: биоценотические и внутривидовые (популяционные). Биоценотические регуляторы численности отдельных популяций – это враги: хищники, паразиты, возбудители болезней, а также конкуренты из числа других видов. С увеличением плотности популяций сила их действия возрастает, а при низкой плотности – ослабевает.

Типы динамики численности.

1.Стабильный тип – характеризуется малой амплитудой и длительным периодом колебаний численности. Внешне она воспринимается как стабильная. Такой тип свойствен крупным животным с большой продолжительностью жизни, поздним наступлением половозрелости и низкой плодовитостью. Это соответствует низкой норме смертности. Например, копытные (период колебания численности 10-20 лет), китообразные, гоминиды, крупные орлы, некоторые рептилии.

2.Лабильный(флюктуирующий) тип – отличается закономерными колебаниями численности с периодом порядка 5-11 лет и значительной амплитудой (в десятки, иногда сотни раз). Характерны сезонные изменения обилия, связанные с периодичностью размножения. Этот тип свойствен животным с продолжительностью жизни 10-15 лет, более ранним половым созреванием и высокой плодовитостью. Сюда относятся крупные грызуны, зайцеобразные, некоторые хищные, птицы, рыбы и насекомые с длинным циклом развития.

3.Эфемерный (взрывной тип) динамики отличается неустойчивой численностью с глубокими депрессиями, сменяющимися вспышками массового размножения, при которых численность возрастает в сотни раз. Ее перепады осуществляются очень быстро. Общая длина цикла обычно составляет до 4-5 лет, из них пик численности занимает чаще всего 1 год. Этот тип динамики характерен для короткоживущих (не более 3 лет) видов с несовершенными механизмами адаптации и высокой гибелью (мелкие грызуны и многие виды насекомых).

ДИНАМИКА ПОПУЛЯЦИЙ это:

ДИНАМИКА ПОПУЛЯЦИЙ периодическое или непериодическое изменение численности, полового или возрастного состава популяции в результате действия абиотических (не зависящих от численности и плотности самой популяции) и биотических (зависящих от численности и плотности популяции) факторов.
Выделяют три вида популяционных динамик: стабильный (изменение численности популяции в несколько раз); изменчивый (колебания численности в десятки раз); взрывной (периодическое превышение средней численности в сотни и тысячи раз).

Экологический словарь. 2001

Смотреть что такое «ДИНАМИКА ПОПУЛЯЦИЙ» в других словарях:

Динамика популяций — * дынаміка папуляцый * population dynamics 1. Изменение численности, полового и возрастного состава популяции, определяемое внутрипопуляционными процессами и взаимодействием популяций разных видов. 2. Научное направление в биологии, изучающее… … Генетика. Энциклопедический словарь

динамика популяций — Раздел биологии, изучающий внутри и межпопуляционные процессы с использованием аппарата математического моделирования; многие закономерности Д.п. имеют генетически и эволюционно обусловленный характер. [Арефьев В.А. Лисовенко Л.А. Англо русский… … Справочник технического переводчика

динамика популяций — population dynamics динамика популяций. Pаздел биологии, изучающий внутри и межпопуляционные процессы с использованием аппарата математического моделирования; многие закономерности Д.п. имеют генетически и эволюционно обусловленный характер.… … Молекулярная биология и генетика. Толковый словарь.

ДИНАМИКА ПОПУЛЯЦИЙ РАСТЕНИЙ — изменение численности, полового и возрастного состава популяции, определяемое внутрипопуляционными процессами и взаимодействиями популяций разных видов … Словарь ботанических терминов

ДИНАМИКА ПОПУЛЯЦИИ — динамика численности популяции, совокупность изменения в структурных элементах популяции в соотношении между рождаемостью и смертностью в ней, обусловленные различными абиотическими и биотическими внешними и внутрипопуляционными факторами… … Экологический словарь

ДИНАМИКА НАСЕЛЕНИЯ — Изменения в составе и структуре биологических сообществ, связанные с несовпадением по времени пиков численности популяций, проявлением полиморфизма или возрастных фаз развития особей разных видов Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

ДИНАМИКА ЧИСЛЕННОСТИ — вредителей, закономерное изменение численности вредящих с. х ву ж ных, напр. насекомых, клещей и др. на протяжении года (сезонная Д. ч.) или ряда лет (многолетняя Д. ч.). Обычно проявляются в виде “популяционных волн”, периоды к рых соответствуют … Сельско-хозяйственный энциклопедический словарь

динамика численности — вредителей, закономерное изменение численности вредящих сельскому хозяйству животных, например насекомых, клещей и др. на протяжении года (сезонная Д. ч.) или ряда лет (многолетняя Д. ч.). Обычно проявляются в виде «популяционных волн», периоды… … Сельское хозяйство. Большой энциклопедический словарь

Популяционная динамика старения — Популяционная динамика старения  направление исследования старения с помощью методов популяционной динамики, то есть исследования возрастного состава популяций стареющих организмов и изменений этой зависимости в зависимости от типа организма … Википедия

ЭКОЛОГИЯ — наука об отношениях организмов с окружающей средой. Термин экология был предложен немецким зоологом Э.Геккелем в 1866, но широкое распространение получил только в начале 20 в. Сам предмет этой науки не отличается новизной. Изучением животных и… … Энциклопедия Кольера

Динамика популяций

Ключевые понятия: популяция — давление среды — емкость среды — динамика численности популяции

Как мы уже отмечали, каждый вид на Земле занимает определенный ареал — в силу того, что каждый вид способен существовать лишь в определенных условиях среды. Однако условия обитания в рамках ареала одного вида (особенно, если речь идет об эврибионтном виде — см. определение эврибионтов в предыдущих уроках) могут существенно отличаться. Это (и не только это) приводит к тому, что на территории, занимаемой видом, возникают достаточно обособленные группы особей, которые отличаются друг от друга целым рядом признаков.

Эти группы особей в пределах одного вида получили название популяции.

ПОПУЛЯЦИЯ — элементарная группировка особей одного вида, занимающая определенную территорию и обладающая всеми необходимыми условиями для поддержания своей стабильности длительное время в меняющихся условиях среды.

Это — определение С.С. Шварца, не трудно заметить, что он определял популяцию с эвлоюционно-экологических позиций. В то же время есть не мало определений понятия «популяция9quot; с точки зрения генетики, экологии. Нам будет удобнее использовать определение Николая Федеровича Реймерса:

ПОПУЛЯЦИЯ — это совокупность особей одного вида, имеющих общий генофонд и населяющих определенное пространство, с относительно однородными условиями обитания.

Динамика численность популяции и ее структура (возрастной, половой состав) являются ее важнейшими характеристиками. Знание типа роста популяции и ее структуры, как мы увидем ниже, имеет важное экологическое значение. Кроме того, динамика численности популяции является излюбленным объектом для создания разнообразных математических моделей.

Численность популяции обычно обозначают заглавной N. Отношение прироста N к единице времени dN/dt выражает мгновенную скорость изменения численности популяции, то есть изменение численности в момент времени t.

Не трудно догадаться, что прирост популяции будет зависеть от двух факторов — рождаемости и смертности. Разумеется, при условии отсутствия эмиграции и иммиграции (такая популяция называется изолированной). Разность рождаемости b и смертности d и представляет собой коэффициент прироста изолированной популяции:

Различают максимальную мгновенную скорость прироста популяции rmax и фактическую скорость увеличения популяции ra. При воображаемых идеальных условиях, когда рождаемость максимальна, а смертность минимальна, ra достигает наибольшей величины — rmax.

Если бы скорость прироста оставалась постоянной, то рост численности популяции происходил по экспоненте:

Здесь Nt — численность популяции в момент времени t, N0 — начальная численность численность популяции, r — скорость прироста (в расчете на одну особь), а e — основание натурального логарифма. Такая экспоненциальная зависимость изображена на рисунке ниже красной линией и носит название биотического потенциала, так как, как правило, она отражает лишь ту потенциальную численность, которую бы могла иметь популяция в случае отсутствия различных ограничивающих ее рост факторов.

Динамика популяции

Поэтому в естетсвенных условиях обычно наблюдается иная зависимость численность популяции от времени. Это зависимость описывается S-образной логистической кривой (она изображена на графике зеленой линией). По достижении какого-то предела график выходит на плато, численность стабилизируется и испытывает только сезонные и разногодичные флуктуации, связанные с изменением погодных условий, численности других популяций (являющихся хищниками или, наоборот, пищевыми ресурсами по отношению к данной популяции) и другими внешними факторами.

Что касается математического выражения этой зависимости, то она отличается от экспоненциальной наличием корректирующего фактора: (К-N)/K, где K — максимально возможная в данных условиях численность популяции. K называется также емкостью среды, а область на графике между кривой биотического потенциала и логистической кривой — давлением среды. Соответственно, уравнение для этой зависимости с учетом крректирующего фактора будет выглядеть так:

Наличие определенной емкости среды, ограничивающей рост популяции, является важной экологической закономерностью. Устойчивое существование всего биотического сообщества связано с существованием механизмов, регулирующих численность составляющих сообщество популяций. В экологии известно не мало примеров, когда нарушение этих механизмов (например, интродукция видов в экосистемы, где у них нет естественных врагов) приводило к плачевным последствиям.

Хочется особо сказать о человеческой популяции. Споры о существовании «пределов роста» и емкости среды применительно к человечеству не утихают до сих пор. Оптимисты уверяют, что человечество может увеличиваться в численности до бесконечности: вот изобретем, как получать еду из пыли путем перегруппировки атомов, расселимся по другим планетам. Пессимисты предсказывают скорый коллапс: как только численность человеческой популяции превысит критический уровень. В оценке этого «критического9quot; уровня и скорости приближения к нему эксперты также расходятся.

О стратегиях выживания человечества мы будем говорить в одном из уроков по глобальной экологии. Однако сейчас хочется отметить, что, на мой, возможно субъективный, взгляд, упование на колонизацию других планет, новые технологии и прочее — позиция неконструктивная и во многом утопичная. В определении емкости среды для человечества необходимо исходить из существующих реалий и общеэкологических закономерностей, о которых мы будем говорить в последующих уроках.

качественно обособленная форма живого — основная единица эволюционного процесса.

совокупность особей одного вида, имеющих общий генофод и населяющих определенное пространство с отноительно однородными условиями обитания.

область распространения любой систематической группы организмов (вида, рода, семейства).

изменение численности, полового и возрастного состава популяции, определяемое внутрипопуляционными процессами и взаимодействием популяций разных видов.

любое перемещение организма из места, считающегося обычным, в другое место.

вселение в какую-либо местность организмов, ранее здесь не обитавших.

ПОТЕНЦИАЛ БИОТИЧЕСКИЙ(репродукционный потенциал, потенциал размножения)

потенциальная способность живых организмов увеличивать численность в геометрической прогрессии.

размер способности природного или природно-антропогенного окружения (среды) обеспечивать нормальную жизнедеятельность определенному числу организмов и их сообществ без заметного нарушения самого окружения.

преднамеренный или случайный перенос особей какого-либо вида живого за пределы его ареала.

Динамика популяций

Прежде, чем говорить о динамике, рассмотрим ряд свойств, которыми характеризуется популяция. Эти свойства можно разделить на биологические и групповые. Биологические свойства присущи как популяции в целом, так и составляющим ее организмам. Они характеризуют жизненный цикл популяции: популяция, так же как и отдельный организм, растет, дифференцируется и поддерживает сама себя, имеет определенную организацию и структуру. Групповые свойства присущи только группе в целом. Как правило, это статистические параметры, такие как плотность, рождаемость, смертность, возрастная структура. В числе прочего, эти параметры хорошо характеризуют динамику популяции, то есть изменение во времени ее численности, структуры и т.п.

Плотность популяции выражается количеством особей или биомассой на единице пространства, например, число деревьев на 1 га или масса планктона в 1 . На разных стадиях жизненного цикла плотность может существенно колебаться. Это напрямую связано с двумя другими показателями популяции: рождаемостью и смертностью.

Рождаемость — это способность популяции к увеличению численности, независимо от того, происходит ли это путем откладывания яиц или путем деления, или почкования, или прорастания из семени, или как-то иначе. Наиболее показательна удельная рождаемость, определяемая как количество особей, появившихся в единицу времени на одну особь в популяции (в демографии расчет ведется на одну женщину репродуктивного возраста). Реальная рождаемость в значительной степени зависит от факторов среды, поэтому она всегда меньше максимальной рождаемости, под которой понимают теоретический максимум рождаемости, определяемый только физиологией особей при оптимальных значениях всех факторов среды.

Смертность характеризует гибель особей в популяции и выражается числом особей, погибших в единицу времени. Удельная смертность характеризует уровень смертности для определенной группы особей, например, количество смертей за месяц на тысячу особей. Смертность также зависит от факторов среды и бывает обычно значительно выше минимальной смертности при идеальных условиях среды, которая определяется физиологией данного вида организмов — даже в идеальных условиях особи будут умирать от старости.

Выживаемость есть параметр, обратный смертности. Если смертность на N особей обозначить через М. то выживаемость определяется разностью N — M. Большой интерес представляют кривые выживания особей популяции в зависимости от их возраста.

Различают три общих типа кривых выживания (рис.13.1). Выпуклая кривая 1 характеризует относительно низкую смертность на протяжении почти всего жизненного цикла популяции. К концу жизненного цикла смертность значительно возрастает. Такая кривая характерна для популяций, в которых основной акцент при размножении делается не на количество новорожденных особей, а на повышенную заботу о молодом поколении. Такого рода кривая характерна для многих высших животных, а также и для человека. Вогнутая кривая 2 характеризует повышенную смертность на ранних стадиях жизненного цикла, которая снижается, когда особи «входят в силу», достигая определенного возраста. Такие кривые типичны для низших организмов и растений. Например, смертность среди молодых дубов и прорастающих желудей особенно велика, но когда дубы достигают определенных размеров, их смертность резко снижается. Аналогичные кривые характерны для рыб, где смертность среди мальков обычно гораздо выше, чем смертность среди взрослых особей. Повышенная смертность в раннем возрасте в таких случаях компенсируется повышенным количеством семян, икринок, яиц и т.п. Промежуточные типы кривой выживания колеблются обычно вокруг средней линии 3. Одним из примеров может служить ступенчатая кривая 4, характерная для видов, у которых смертность значительно меняется на разных стадиях жизненного цикла. Примером могут служить некоторые виды насекомых, жизненный цикл которых проходит последовательно через несколько стадий: яйцо, личинка, куколка, взрослое насекомое.

На основе кривых выживания можно уже сделать вывод о возрастной структуре популяции, которая определяет соотношение в ней разных возрастных групп. Знание возрастной структуры определяет возможность прогнозирования динамики численности популяции. Так, например, в популяциях, в которых ожидается быстрый рост численности, преобладают молодые особи. Такие популяции называют внедряющимися, или пионерными. Такое состояние популяции может быть вызвано освобождением экологических ниш (например, в связи с деятельностью человека), внедрением новых видов в экосистемы, где у них нет соответствующего хищника, причиной может быть также малая устойчивость экосистем и т.п. Если же в возрастной структуре достаточно велика доля старых особей, то в ближайшем будущем следует ожидать снижения численности популяции. Такие популяции называются регрессивными, или вымирающими. Наибольшей жизнеспособностью и стабильностью отличаются популяции, в которых возрастная структура более выровнена. Такие популяции называются нормальными.

Особенно интересно приложение данной закономерности к человеческому обществу (рис.13.2). Сравнение возрастной структуры, например, в Швеции и Коста-Рике, красноречиво говорят об ожидаемой динамике численности в этих странах, что подтверждается фактическими данными: в Латинской Америке численность населения растет угрожающими темпами. Известно, что численность населения Латинской Америки по сравнению с 1900 годом возросла в 8,5 раз. В Европе ситуация более стабильная, однако наблюдается уменьшение численности коренного населения, некоторый прирост численности наблюдается лишь за счет эмигрантов.

Однако наибольшее значение для экологии имеют не сами показатели плотности или численности популяции или ее возрастная структура, а скорости, с которыми меняются все эти показатели.

Если среда не лимитирует популяцию, то динамика численности популяции описывается дифференциальным уравнением: dN/dt = rN (скорость роста численности пропорциональна числу особей), которое имеет решение в виде: . Здесь — численность в начальный момент времени, t — время, r — коэффициент роста популяции, определяемый как разность между удельной рождаемостью b (в расчете на одну особь) и удельной смертностью d в данный момент времени, то есть r = b — d. Максимально возможное значение коэффициента роста популяции , достигаемое при наиболее благоприятных условиях среды, называется биотическим потенциалом популяции. Обычно биотический потенциал тем выше, чем ниже уровень организации организмов. Так дрожжевые клетки, размножаясь делением, при условии реализации биотического потенциала способны освоить весь земной шар за несколько часов. Крупным организмам с более низким потенциалом для этого потребовалось бы несколько десятилетий или даже столетий.

Следует отметить, что человек сейчас находится в условиях, когда его коэффициент роста близок к биотическому потенциалу. В 1968 году время удвоения численности людей составляло 35 лет, однако в некоторых странах этот период был еще меньше, и с течением времени он неуклонно уменьшается. То есть мы все ближе к некоторому минимальному значению периода удвоения численности, ниже которого мы не сможем переступить по чисто физиологическим причинам, это и будет, вероятно, соответствовать полной реализации нашего биотического потенциала. Понятно, что природа не выдержит такого натиска.

В соответствии с решением уравнения динамики численности популяции можно построить так называемую кривую роста популяции (рис.13.3). Из уравнения видно, что это экспонента, поэтому такую кривую называют экспоненциальной, или J -образной.

Особенность J -образной динамики в том, что рано или поздно относительно свободный рост численности популяции прекращается. Связано это, как правило, с исчерпанием какого-либо ресурса, на базе которого развивается данная популяция, например пространство или пища. Причиной также могут служить внезапные заморозки или какой-то другой фактор среды, прекращающий сезон относительного благополучия. После этого численность популяции может катастрофически понизиться (пунктирная линия на рисунке). Иногда вслед за подобным падением идет повторный рост численности, в результате формируется так называемая триггерная кривая роста, свойственная, например, однолетним растениям, некоторым насекомым, популяциям леммингов в тундре и т.п.

Подобные тенденции вызывают немалые опасения в плане судьбы человеческой цивилизации. Несмотря на все прогнозы демографов, динамика численности людей никак не желает стабилизироваться, оставаясь очень близкой к J -образной кривой. Мы уже близки к разрушению собственной среды обитания, а значит, вполне возможно, что в достаточно скором будущем (возможно, при жизни нынешних поколений) нас может ожидать катастрофическое снижение численности населения Земли.

Обычно лимитирующее давление среды играет в динамике популяции роль отрицательной обратной связи, поэтому в уравнении динамики популяции появляется дополнительный сомножитель или слагаемое:

где К — верхняя асимптота, соответствующая верхнему пределу численности популяции после того, как в системе наступит равновесие (ее величина определяется средой, точнее, надсистемой). В данном случае скорость роста равна максимальной скорости роста (rN ), определяемой биотическим потенциалом, умноженной на степень реализации максимальной скорости (1-N/K ), которая тем ниже, чем больше плотность, или численность N. популяции. Поэтому такую динамику называют зависимой от плотности (численности), в отличие от независимой от плотности J -образной динамики.

Решение этого дифференциального уравнения имеет вид:

где a — постоянная интегрирования, определяющая положение кривой относительно начала координат. Кривая роста популяции, описываемая данным уравнением, называется логистической или S -образной кривой. В принципе J -образную кривую можно рассматривать, как неполную реальную S -образную кривую, просто лимитирующие факторы среды в этом случае ограничивают рождаемость еще до того, как существенную роль в регулировке численности начнут играть внутренние факторы, обеспечивающие устойчивость системы. J -образная кривая роста характерна для некоторых популяций именно в системах с малой устойчивостью, то есть бедным видовым разнообразием, например, для леммингов в тундре, или для саранчи и других сельскохозяйственных вредителей в условиях агроценозов. Однако, такая же независимая от плотности динамика характерна и для многих пионерных видов, заселяющих еще необжитые пространства или успешно вытесняющих более слабых конкурентов из их экологических ниш. Так было, например, в случае с кроликами в Австралии. Нечто подобное, по-видимому, происходит и с человеческой цивилизацией.

Интересно, что оба основных типа роста численности популяции сходны с двумя типами метаболизма или роста для отдельных особей, что лишний раз подчеркивает глубокие аналогии между популяцией и живым организмом. Почти все математические модели роста популяций сильно уязвимы. В наиболее частом случае динамика популяции не идет ни по одной из этих кривых, реальная кривая роста располагается где-то в промежутке между этими кривыми. По инерции рост численности еще некоторое время может продолжаться даже после выхода за пределы верхней асимптоты, но затем после нескольких колебаний численность популяции, как правило, либо стабилизируется, либо совершает незначительные колебания относительно значения N = K. Иногда эти колебания могут быть достаточно существенными, их называют популяционными волнами или волнами жизни. Причины популяционных волн могут быть как внешними (периодические изменения факторов среды), так и внутренними, связанными особенностями межвидовых и внутривидовых отношений.

Внутренние механизмы регулировки численности, работающие по принципу обратной связи, могут быть самыми различными. Все их можно объединить в понятие популяционного гомеостаза. Так наиболее действенным механизмом являются взаимоотношения между хищниками и жертвами. например рысь-заяц. Высокая численность жертв способствует росту хищников, которые сокращают поголовье жертв и сами попадают в неблагоприятные пищевые условия, в результате чего их численность начинает также уменьшаться, что способствует увеличению численности жертв, и т.д. Интересно, что статистическая модель системы хищник-жертва, реализованная на компьютере, дает колебания численности жертв и хищников, которые совершаются практически в противофазе, что вполне теоретически объяснимо, так как техническим аналогом данной биотической системы может служить обычный колебательный контур, где происходит периодическое взаимное превращение потенциальной и кинетической энергии. Однако для реальных кривых характерно лишь некоторое запаздывание по фазе колебаний численности хищников относительно колебаний численности жертв. Расхождение с моделью вызвано, по-видимому, наложением на систему хищник-жертва других механизмов гомеостаза, которые способствуют сближению фаз обоих колебаний, понижая тем самым инертность системы. А также тем фактом, что система эта не является изолированной, то есть заяц может стать жертвой совсем другого хищника, и рысь не обязательно питается только зайцами, имеются, вероятно, и другие причины. Система хищник-жертва может быть распространена на любой уровень трофической структуры экосистемы, например, заяц-трава и т.п.

К подобным межвидовым механизмам регулировки численности популяций можно отнести и межвидовую конкуренцию. которая ограничивает экологическую нишу данной популяции, приводя иногда даже к гибели части особей. При этом внутри популяции происходит достаточно жесткий отбор претендентов на продолжение рода. Конкретные механизмы этого отбора также могут быть различными. Это может быть по принципу «выживает сильнейший», например, на стадии всходов молодых растений преимущество имеет тот, кто смог быстрее всех выйти в более высокий ярус, остальные погибают в затенении. Однако, и они играют свою положительную роль в жизни популяции, отдавая, по-видимому, свою «жизненную силу» более перспективным претендентам через систему сросшихся друг с другом корней. У высших животных такая внутривидовая конкурентная борьба может проходить в более мягких формах, например, путем исключения ослабленных особей из процесса размножения без их непосредственной гибели.

Имеются и другие, менее понятные, механизмы. Например, зайцы-беляки в период пика численности могут часто погибать от «шоковой болезни», связанной с увеличением надпочечников и другими признаками нарушения гормонального равновесия. Часто в условиях повышенной численности популяции у животных наблюдаются случаи каннибализма (поедания себе подобных), например, окуни могут начать питаться собственными мальками. По мере возрастания биомассы деревьев более крупные и старые деревья могут становиться более восприимчивыми к насекомым-вредителям и часто гибнут, освобождая место более молодым. Иногда во время нашествий насекомых-вредителей такое массовое омоложение леса по масштабам может сравниваться даже с действием бурь или пожаров. Причем, в отличие от пожара, сукцессия начинается с более поздних стадий, а именно: со стадии молодых деревьев доминирующего вида. Интересным является механизм ингибирования (угнетения), проявляющийся в выделении в окружающую среду веществ, тормозящих динамику популяции. Этот механизм характерен как для растений и микроорганизмов, так и для животных. Например, подача в помещение, где нормально развиваются лабораторные животные (например, мыши), воздуха из густонаселенных помещений тормозит развитие животных в свободном помещении. Имеется и масса других примеров наличия внутренних механизмов регулировки численности. Практически все эти примеры можно свести к одному утверждению: в условиях повышенной плотности (численности) популяции возрастают стрессовые явления, которые действуют на данную популяцию угнетающе и являются своего рода внутрипопуляционной обратной связью.

В условиях человеческого общества, практически не имеющего врагов в природе, именно стрессовые механизмы начинают играть главную роль в ответ на взрывоподобный рост численности населения.

Давно подмечено, что каждый человек обладает набором своего рода «интимных зон» разного радиуса, то есть определенных объемов пространства, где присутствие кого-либо вызывает неприятные ощущения. Так, например, в разговоре люди инстинктивно соблюдают определенную пространственную дистанцию между собой (порядка 1 м). Попытки сократить эту дистанцию вызывают у собеседника неосознанное желание чуть отодвинуться. Конечно, для разных людей эта зона различна. Имеются и другие зоны гораздо большего радиуса, но чем меньше радиус зоны, тем меньшее количество времени может выдерживать человек присутствие в этой зоне других людей без каких-либо стрессовых проявлений. Поэтому, например, люди, живущие в густонаселенных районах, в тесных комнатах многоквартирных домов, не имеющие возможности остаться наедине с собой в достаточно просторной зоне, оказываются гораздо более нервозными, чем, скажем, жители деревень, где такой проблемы не существует. Поэтому деревенские жители «задыхаются» в людных городах, поэтому горожан тянет «на природу», где можно хотя бы на время расширить «зону интима». Поэтому основное количество болезней (до 90 % и больше) сейчас либо напрямую вызвано нервными перегрузками, либо косвенно связано с нервным истощением организма. Так, может быть, механизм корректировки численности людей уже включился? Ведь не случайно, несмотря на успехи медицины, двадцатый век по праву можно назвать веком болезней.

Но все это лишь конкретные механизмы. Кто включает эти механизмы? Почему, например, после сильного выедания растительности леммингами в годы пика их численности происходит уменьшение доступности биогенных элементов, в результате чего ценность пищи леммингов снижается, в связи с чем ограничивается рост и выживаемость молодых особей? Затем биогенные элементы возвращаются в круговорот, и растительный покров восстанавливается. Конечно, и здесь можно выявить определенные связи и адаптации. Однако ясно, что регулировка численности осуществляется не на популяционном, а на экосистемном уровне. То есть именно экосистема (надсистема по отношению к популяции) диктует популяции свои условия с помощью какой-то своей особой физиологии, что лишний раз доказывает ее аналогию с целостным организмом.

Вероятно, и человек в скором времени может испытать на себе прессинг надсистемы. Может быть, это уже происходит. Но слишком инертна надсистема, и слишком новым для нее является столкновение с человеком-разумным, вышедшим из-под власти биосферы. Когда она найдет действенное средство, ингибировать наш рост — лишь дело времени. Ни одна популяция, в том числе и человеческая не может жить вне экосистем, человек — часть организма планеты, и рано или поздно планета начнет «лечиться».

Несколько слов нужно сказать и об одном из важнейших механизмов популяционного гомеостаза — миграции. Вообще переход особей из одной популяции в другую — дело обычное и полезное, так как способствует уменьшению вероятности близкородственного скрещивания. Правда, в периоды высокой плотности к иммигрантам относятся везде достаточно враждебно.

Однако наибольший интерес представляют массовые исходы особей из популяции при явной перенаселенности — нашествия. В популяциях, склонных к J -образной динамике (пионерные виды), нашествие является, по-видимому, одним из вполне обычных механизмов «деления» популяции, подкрепленных рядом инстинктов и адаптаций, в некотором роде подобных процессу деления клетки. Например, непосредственно перед миграцией у саранчи появляются более развитые крылья и более темная окраска, что способствует лучшему прогреванию тела солнечными лучами, а поэтому увеличивает подвижность особей. Сам процесс массовой миграции очень болезненный, так как гибнет огромное количество особей, у которых до некоторой степени притупляется инстинкт самосохранения. Все поведение насекомых направлено на выживание популяции, а не на личную безопасность.

У насекомых со сложной социальной организацией, типа пчел, муравьев и пр. подобные процессы настолько отлажены, что без особых преувеличений могут быть названы популяционной физиологией. Например, в пчелином улье в самом расцвете его сил, когда пчелиная семья наиболее сильна и запасы меда велики, рождается новая матка, а старая матка вместе с частью населения улья покидает его в поисках нового местожительства. Процесс этот происходит в несколько этапов, он сложен и тонко «продуман». Процессы, подобные роению пчелиной семьи, являются более высокой эволюционной стадией того, что мы называем массовыми миграциями.

Не меньшее удивление вызывают периодические сезонные миграции птиц и рыб. Так, например, каждую осень мы наблюдаем, как многие виды птиц улетают на юг, а по весне возвращаются обратно. Механизм этих миграций, по-видимому, связан не с перенаселенностью, а с особенностями жизненного цикла, закрепленными в инстинктах. Однако, некоторая общность все же имеется. Например, ближе к осени птицы становятся более беспокойными, усиливается стайный инстинкт, который дает эгрегору стаи (надсистеме) власть над каждой особью, заставляя ее, рискуя жизнью, пускаться в тяжелейшие испытания. Многие исследователи склоняются к мысли, что поведение птиц объяснимо только с холистских позиций. То есть главную направляющую роль в этих процессах играет биосфера в целом. Конечно речь не идет о каком-то разуме, командующем птичьими стаями. Однако в этих процессах можно наблюдать очень тесную аналогию с вегетативными процессами и системами организма (непроизвольные процессы, не подчиняющиеся непосредственно волевым усилиям, такие как сердечная деятельность, пищеварение, терморегуляция и т.п. в отличие, например, от двигательных систем).

Человек является, по-видимому, типичным пионерным видом с J -образной динамикой, для которого характерна тяга к миграциям в периоды перенаселенности. Для этого мы имеем определенный набор инстинктов. Так непосредственно перед миграцией у наших предков, по-видимому, начинали рождаться дети, для которых было характерно ускоренное созревание, более высокие физические данные и повышенная воинственность, потому что они должны были охранять мигрирующую популяцию, защищая ее ценой собственной жизни. По прибытии, они должны как можно скорее дать новое потомство, чтобы восполнить свои сильно поредевшие ряды. Со всеми этими атавизмами (признаки, свойственные далеким предкам) мы столкнулись, по-видимому, уже в наше время, что вызвало в свое время немалое удивление. Мы назвали это явление акселерацией (ускоренное развитие). Акселератам свойственны и быстрое половое созревание, и большая физическая сила, и повышенная агрессивность. В животном мире акселерация не редкость. Но возникает она как своего рода защитная реакция на грозящие данному виду потрясения. Возникает резонный вопрос: куда мы собираемся мигрировать? к каким потрясениям готовит нас эгрегор (надсистема) человеческого общества? А может он сам не понимает, что происходит и в беспорядке пробует все известные ему средства? Ведь мы живем не только во времена акселерации, но и во времена повышенного количества мутаций, вспомните, сколько детей с различного рода отклонениями рождается в наших роддомах.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *