Цитоплазма строение и функции

Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции

Цитоплазма. отделенная от окружающей среды плазмолеммой, включает в себя основное вещество (матрикс и гиалоплазма), находящиеся в ней обязательные клеточ­ные компоненты – органеллы, а также различные непостоянные структу­ры – включения.

В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры. Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом.

В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Включает микротрабекулярную сеть, образованную тонкими фибриллами толщиной 2-3 нм и пронизывающей всю цитоплазму. Основное вещество цитоплазмы следует рассматри­вать так же, как сложную коллоидную систему, способную переходить из жидкого состояния в гелеобразное.

— объединяет все клеточные структуры и обеспечивает их взаимодействие друг с другом.

— является вместилищем для ферментов и АТФ.

— откладываются запасные продукты.

— происходят различные реакции (синтез белка ).

Включениями называют непостоянные ком­поненты цитоплазмы, которые служат запасными питательными ве­ществами, продуктами, подлежащими выведению из клетки, балластными веществами.

Органеллы — это постоянные структуры цитоплазмы, выполняю­щие в клетке жизненно важные функции.

1) Рибосомы — мелкие тельца грибовидной формы, в которых идет синтез белка. Они состоят из рибосомальной РНК и белка, образующего большую и малую субъединицы.

2) Цитоскелет — опорно-двигательная система клетки, включающая не­мембранные образования, выполняющие как каркас­ную, так и двигательную функции в клетке. Эти нитчатые или фибрилляр­ные могут быстро возникать и так же быстро исчезать. К этой системе отно­сятся фибриллярные структуры(5-7нм) и микротрубочки (состоят из 13 субъединиц).

3) Клеточный центр состоит из центриолей (длинна 150 нм, диаметр 300-500 нм), окруженных центросферами.

Центриоли состоят из 9 триплетов микротрубочек. Функции:

— образование нитей митотического веретена деления.

– Обеспечение расхождения сестринских хроматид в анафазе митоза.

4) Реснички (Ресничка представляет собой тонкий цилиндрический вырост цитоплаз­мы с постоянным диаметром 300 нм. Этот вырост от основания до самой его верхушки покрыт плазматической мембраной) и жгутики ( длинна 150 мкм) — это специальные органеллы движения, встречающиеся в некоторых клетках различных организмов.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции.

Цитоплазма состоит из гиалоплазмы и органелл, включений.

Гиалоплазма – жидкая часть цитоплазмы, которая может быть в состоянии геля, золя.

По химическому составу представлена органическими и неорганическими веществами.

  • транспортная
  • участие в обмене веществ
  • гомеостатическая

Немембранные органеллы цитоплазмы, их строение и функции.

1. Рибосомы – органеллы, состоящие из малой и большой субъединиц. Субъединицы, образованные белком, расположенном на молекуле иРНК, называются полисомией или полирибосомой. Функция: синтез белка.

2. Центросома (клеточный центр) состоит из 2-х центриолей и лучистой сферы. Каждая центриоль состоит из 9 триплетов, параллельно расположенными микротрубочками. Во время деления клетки центриоли направлены к противоположным полюсам и поляризуют клетку. Из микротрубочек лучистой сферы образуется веретено деления.

Микрофиламенты это нитевидные структуры, построенные из белков

  • Микрофиламенты образованы белками актина и миозина
  • Микротрубочки – тубулином
  • Микрофибриллы – кератином

Функции: являются цитоскелетом клетки. Из них образуются реснички, жгутики; являются опорой для клетки и выполняют сократительную функцию.

Мембранные органеллы цитоплазмы, их строение и функции

  • Эндоплазматическая сеть (ЭПС) – совокупность мембран, мелких вакуолей, канальцев, построенных из клеточных мембран.

1. Шероховатая (гранулярная) на мембранах этой сети расположены рибосомы

Функции: синтез белка

2. Агранулярная (гладкая) нет рибосом

Функции: синтез липидов и углеводов.

Структурной и функциональной единицей является диктиосома. Диктиосома образована из мешочков, которые в виде стопки (3-12 дискообразных цистерн, расположенных друг над другом).

3. уплотнение внутриклеточного секрета

4. образуются лизосомы

5. происходит накопление и выведение веществ

6. образуется борозда деления при митозе

7. образуются комплексные органические соединения

  • лизосомы – органеллы в виде пузырьков, ограниченных одинарной мембраной. Внутри лизосом находится набор гидролитических ферментов.

1. переваривание поглощенного материала клеткой

2. автолиз («авто» — сам) Ферменты лизосом переваривают части самой клетки или ее саму

3. удаление целых клеток и межклеточного вещества

4. переваривание бактерий, вирусов

  • пероксисома – органелла, окруженная одинарной мембраной в виде пузырька. Органеллы содержат фермент пероксидазу. Функция: расщепление перекиси водорода.
  • Сферосома – пузырек, ограниченный одинарной мембраной. Функции: синтез и накопление жира
  • Митохондрия – органеллы, окруженные двумя мембранами. Наружная мембрана – гладкая, внутренняя – образуются гребни, кристы. Заполнена матриксом, в котором находятся рибосомы. Функции: синтез АТФ
  • Вакуоли – полости в цитоплазме клеток, ограниченных одинарной мембраной. Они заполнены жидкостью.

1. пищеварительные – расщепление и переваривание органических веществ. Имеются только у простейших и растений.

2. сократительные – пульсирующая, выделительная, осморегуляторная функция

· Пластиды – органеллы растительной клетки. Ограничены двумя мембранами. В пластидах находятся пигменты.

1. хлоропласты (зеленые) содержат пигмент – хлорофилл, участвуют в фотосинтезе

2. хромопласты – содержат пигменты красно-оранжевого цвета

3. лейкопласты (белые) – бесцветные пластиды. В них накапливаются органические вещества

Строение ядра. Ядрышко, строение и функции

Ядро состоит из:

· кариолемы (ядерная оболочка)

· ядерного сока (кариоплазма)

Ø Ядерная оболочка образована наружной и внутренней мембранами. Между мембранами находится перинуклеальное пространство. Ядерная оболочка пронизана отверстиями или порами. Функции: Защитная, транспортная. По физическому состоянию подобна гиалоплазме. А по химическому составу отличаются от гиалоплазмы наличием ферментов и других органических веществ

Ø Хроматин. По хим. Составу – это ДНК и белки. Во время деления клетки молекула ДНК спирализуется и из хроматина образуются хромосомы

Ø Ядрышко – органелла ядра.

Плотные тельца, в 1 ядре их может быть несколько. В хромосоме имеется ядрышковый организатор. Он образован ДНК и белками. ДНК ядрышкового организатора образует гены, в которых хранится информация о строении тРНК и рРНК. Вне хромосом копии генов ядрышкового организатора формируют ядрышко. Функции: образование тРНК и рРНК, рибосом.

Хромосомы, их классификация по месту расположения центромеры. Кариотип, идиограмма.

Хромосомы – это органеллы ядра

По месту расположения центромеры различают следующие виды хромосом:

  • Метацентрическая хромосома (равноплечие) – центромера делит хромосому на 2 равных плеча
  • Субметацентрическая — центромера незначительно смещена от центра
  • Акроцентрическя – центромера близко располагается к одному концу

Кариотип – хромосомный набор клетки, совокупность данных о числе хромосом, их форме и размерах

Идиограмма – графическое изображение кариотипа

infopedia.su не принадлежат авторские права, размещенных материалов. Все права принадлежать их авторам. В случае нарушения авторского права напишите сюда.

Строение и функции цитоплазмы. Немембранные органеллы цитоплазмы, их строение и функции.

Цитоплазма, отделенная от окружающей среды плазмолеммой, включает в себя основное вещество (матрикс и гиалоплазма), находящиеся в ней обязательные клеточ­ные компоненты – органеллы, а также различные непостоянные структу­ры – включения.

В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры. Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. В электронном микроскопе матрикс цитоплазмы имеет вид гомогенного или тонкозернистого вещества с низкой электронной плотностью. Включает микротрабекулярную сеть, образованную тонкими фибриллами толщиной 2-3 нм и пронизывающей всю цитоплазму. Основное вещество цитоплазмы следует рассматри­вать так же, как сложную коллоидную систему, способную переходить из жидкого состояния в гелеобразное.

Функции. — объединяет все клеточные структуры и обеспечивает их взаимодействие друг с другом. – является вместилищем для ферментов и АТФ. – откладываются запасные продукты. – происходят различные реакции (синтез белка). – постоянство среды. – является каркасом.

Включениями называют непостоянные ком­поненты цитоплазмы, которые служат запасными питательными ве­ществами, продуктами, подлежащими выведению из клетки, балластными веществами.

Органеллы — это постоянные структуры цитоплазмы, выполняю­щие в клетке жизненно важные функции.

1) Рибосомы — мелкие тельца грибовидной формы, в которых идет синтез белка. Они состоят из рибосомальной РНК и белка, образующего большую и малую субъединицы.

2) Цитоскелет — опорно-двигательная система клетки, включающая не­мембранные образования, выполняющие как каркас­ную, так и двигательную функции в клетке. Эти нитчатые или фибрилляр­ные могут быстро возникать и так же быстро исчезать. К этой системе отно­сятся фибриллярные структуры(5-7нм) и микротрубочки (состоят из 13 субъединиц).

3) Клеточный центр состоит из центриолей (длинна 150нм, диаметр 300-500 нм), окруженных центросферами.

Центриоли состоят из 9 триплетов микротрубочек. Функции:

— образование нитей митотического веретена деления.

– Обеспечение расхождения сестринских хроматид в анафазе митоза.

4) Реснички (Ресничка представляет собой тонкий цилиндрический вырост цитоплаз­мы с постоянным диаметром 300 нм. Этот вырост от основания до самой его верхушки покрыт плазматической мембраной) и жгутики ( длинна 150 мкм) — это специальные органеллы движения, встречающиеся в некоторых клетках различных организмов.

Мембранные органеллы цитоплазмы, их строение и функции.

Эндоплазматическая сеть (ЭПС) — одномембранная система канальцев, трубочек, цис­терн, которая пронизывает всю цитоплазму. Она разделяет ее на отдельные отсеки, в кото­рых идет синтез различных веществ, обеспечивает сообщение между отдельными частями клетки и транспорт веществ. Различают глад­кую и гранулярную ЭПС. На гладкой — идет синтез липидов, метаболизме углеводов, дезактивации вредных веществ. На гранулярной — располага­ются рибосомы и синтезируется белок, транспорт и поставка.

— Аппарат Гольджи — одномембранная струк­тура, состоящая из пузырьков и цистерн, связанная с ЭПС и собранная в небольших зонах. Обеспечивает упаковку и вынос синтезируемых веществ из клетки, образование лизосом, сортировка белков.

Лизосомы — шарообразные тельца, ограниченные одиночной мембраной, размером 0,2-0,4 мкм, содержа­щие гидролитические ферменты, которые рас­щепляют высокомолекулярные вещества, т. е обеспечивают внутриклеточное переваривание.

Пероксисомы — небольшие (размером 0,3—1,5 мкм) овальной формы тельца, ограниченные мембраной, содержащие грануляр­ный матрикс, в центре которого часто видны кристаллоподобные структуры, состоящие из фибрилл и трубочек. Пероксисомы особенно характерны для клеток печени и почек. Во фракции пероксисом обнаружи­ваются ферменты окисления аминокислот, при работе которых образуется перекись водорода.

— Митохондрии — полуавтономные двумембранные структуры продолговатой формы. На­ружная мембрана гладкая, а внутренняя имеет складки — кристы, увеличивающие ее поверх­ность. Внутри митохондрия заполнена матриксом, в котором находятся кольцевая молекула ДНК, РНК, рибосомы. Количество митохондрий в клетках различ­но, с ростом клеток их число увеличивается в результате деления. Митохондрии — это «энер­гетические станции» клетки. В процессе дыха­ния в них происходит окончательное окисление веществ кислородом воздуха. Выделяющаяся энергия запасается в молекулах АТФ, синтез ко­торых происходит в этих структурах.

Строение ядра. Ядрышко строение и функции.

ядро открыто в 1831г. Броуном. В клетке может быть от одного до нескольких ядер, чаще округлых расположенных в центре клетки. Ядро присутствует во всех эукариотах, но в тромбоцитах крови ядра утрачиваются и клетки погибают.

Ядро – структура, обеспечивающая генетическую детерминацию и регуляцию белкового синтеза. Строение: ядерная оболочка, хроматин, ядерный сок, ядрышко.

Ядерная оболочка состоит их 2 мембран типичного строения между кот перенуклеарное пространство, соединяющееся с каналом ЭПС. На наружной ядерной мембране много рибосом. внутренняя мембрана связана с внутриядерным матриксом, состоящим из белков, кот удерживает хроматин(Ф-ции:защитная и транспортная).

Ядерный сок – по физ. Состоянию аналогичен гиалоплазме, но имеет др. набор белков, нуклеотиды, ДНК и РНК.

Хроматин – вещество образованное ДНК и белками. Из него во время деления клетки образуется хромосомы. Он виден в ядре на стадии интерфазы в виде глыбок.

В ядрышке выделяют нитчатый и зернистый компоненты. Нитчатый компонент состоит из белка и гигантской РНК – предшественницы, которая затем образует более мелкие рРНК. В процессе созревания фибриллы преобразуются в зёрна (гранулы). Функции: обеспечивает образование и созревание рРНК.

Хромосомы, их классификация по месту расположения центромеры. Кариотип. Идеограмма.

Хромосомы-органоиды ядра клетки, опреде­ляющие наследственные свойства (признаки) клеток и организмов. Способны к делению (са­мовоспроизведению). Каждый вид организмов имеет свойственные ему хромосомы и их посто­янный набор в ядрах клеток. Число хромосом в клетках разных видов организмов колеблется от двух до нескольких сотен. Хромосомы перед де­лением клеток хорошо видны в микроскоп.

Классификация по месту центромеры:

  • Равноплечие (метацентрические) – с центромерой посередине.
  • Неравноплечие (субметацентрические) – с центромерой сдвинутой к одному из концов.
  • Палочковидные (акроцентрические) – с центромерой расположенной практически на конце хромосомы.

Кариотип – совокупность числа, размеров и особенностей строения хромосом данного вида.

Идеограмма – графическое изображение кариотипа.

Строение, свойства и функции хромосом.

Строение – состоят из ДНК и белков, образующих хроматин.

  • — Хранение генетической информации.
  • — Использование генетической информации для поддержания клеточной организации.
  • — Регуляция считывания наследственной информации.
  • — Удвоение генетического материала.
  • — Передача генетической информации от материнской клетки к дочерней.

Лекция № 6. Эукариотическая клетка: цитоплазма, клеточная оболочка, строение и функции клеточных мембран

Цитоплазма

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз ). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль ) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Строение мембран

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Цитоплазма строение и функции

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

Цитоплазма строение и функции

Строение мембраны: А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

  1. отделение клеточного содержимого от внешней среды,
  2. регуляция обмена веществ между клеткой и средой,
  3. деление клетки на компартаменты («отсеки9raquo;),
  4. место локализации «ферментативных конвейеров»,
  5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6. распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na +. K +. Ca 2+. Cl — ); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na + /К + -насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Цитоплазма строение и функции

Работа Na + /К + -насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К + и Na + в цитоплазме и во внешней среде. Концентрация К + внутри клетки должна быть значительно выше, чем за ее пределами, а Na + — наоборот. Следует отметить, что Na + и К + могут свободно диффундировать через мембранные поры. Na + /К + -насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na + из клетки, а K + в клетку. Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K +. так и Na +. Цикл работы Na + /К + -насоса можно разделить на следующие фазы: 1) присоединение Na + с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na + во внеклеточном пространстве, 4) присоединение K + с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K + во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na + и закачивает 2К + .

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Перейти к лекции №7 «Эукариотическая клетка: строение и функции органоидов»

11.Цитоплазма. Органеллы общего значения и специальные, их строение и функции.

В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2—3 нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов.

Включениями называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значения и специальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества — переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез.

Канальцевая и вакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяют шероховатую и гладкую цитоплазматическую сети. Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называются эргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома это округлая рибонуклеопротеиновая частица диаметром 20—30 нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называют полисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма — с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Голъджи образован совокупностью диктиосом числом от нескольких десятков (обычно около 20) до нескольких сотен и даже тысяч на клетку.

Диктиосома представлена стопкой из 3—12 уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Митохондрии это структуры округлой или палочко-видной, нередко ветвящейся формы толщиной 0,5 мкм и длиной обычно до 5—10 мкм. В большинстве животных клеток количество митохондрий колеблется от 150 до 1500, однако в женских половых клетках их число достигает нескольких сотен тысяч. В сперматозоидах нередко присутствует одна гигантская митохондрия, спирально закрученная вокруг осевой части жгутика. Одна разветвленная митохондрия обнаружена в клетке такого паразита человека, как трипаносома.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20—40 нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.

В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2—б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала — этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки. Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме.

Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата — АТФ). В целом этот процесс называется окислительным (расформированием). В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы представляют собой пузырьки диаметром обычно 0,2—0,4 мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом — внутриклеточное переваривание оазличных химических соединений и структур.

Первичными лизосомами (диаметр 100 нм) называют неактивные органеллы, вторичными органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются на гетеролизосомы (фаголизосомы) и аутолизосомы (цитолизосомы). В первых переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называют остаточными тельцами (телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1—1,5 мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности, пероксисомы. Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает 70—100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки трубчатые образования различной длины с внешним диаметром 24 нм, шириной просвета 15 нм и толщиной стенки около 5 нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов. Актиновые микрофиламенты благодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10 нм — промежуточные филстенты. В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр, в состав которого входят центриоли. Центриолъ (под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150 нм и длиной 300—500 нм. Ее стенка образована 27 микротрубочками, сгруппированными в 9 триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *