Фототиристор

Фототиристоры

Фототиристор – это четырехслойная полупроводниковая структура, управляемая световым потоком подобно тому, как триодные тиристоры управляются напряжением, подаваемым на управляющий электрод. Они применяются в качестве бесконтактных ключей для коммутации световым сигналом электрических сигналов большой мощности. Принцип действия фототиристора аналогичен обычному тиристору, при этом увеличение коэффициентов передачи эмиттерных переходов и достигается за счет освещения баз тиристора – n1 – и p2 –областей (рис. 8.13).

Фототиристор

Рис.8.13. Структурная схема фототиристора

Оптический сигнал, попадая на базовые области, вызывает генерацию неравновесных носителей, которые диффундируют к обратно-смещенному коллекторному переходу П2 (рис. 5.17). Неосновные носители (дырки) n1 –области экстрагируют через коллекторный переход в p2 –область, а неосновные носители p2 –области (электроны) перебрасываются в n1 –область. За счет этого происходит перераспределение внешнего напряжения Uвн. приложенного к тиристору; напряжение на коллекторном переходе П2 несколько уменьшается, а напряжения на эмиттерных переходах П1 и П3 несколько увеличиваются, что повышает инжекцию носителей из эмиттеров в базы. Эмиттерные токи возрастают, что приводит к увеличению коэффициентов и . В связи с этим процесс включения фототиристора происходит так же, как и при подаче напряжения на управляющий электрод тиристора.

Чем больше световой поток, действующий на тиристор, тем при меньшем напряжении включается фототиристор. Вольтамперная характеристика фототиристора представлена на рис. 5.18.

Фототиристор

Рис.8.18. Вольт амперная характеристика фототиристора

Фототиристор остается во включенном состоянии после окончания импульса светового потока. Для выключения фототиристора необходимо уменьшить напряжение или ток до значений, меньших напряжения или тока удержания. Сопротивление фототиристора во включенном состоянии единицы и доли Ом, а в выключенном – сотни кОм. Время переключения лежит в пределах 10 -5 …10 -6 с.

Если у фототиристора имеется вывод от одной из базовых областей, то подавая на управляющий электрод напряжение, смещающее соответствующий эмиттерный переход в прямом направлении, можно понижать напряжение включения. Само включение фототиристора по-прежнему будет осуществляться действием светового потока. Достоинствами фототиристоров является: малое потребление мощности во включенном состоянии, малое время включения, отсутствие искрения, малые габариты.

Основными параметрами фототиристоров являются: напряжение включения Uвкл ; ток включения Iвкл. соответствующий напряжению включения; напряжение выключения Uвыкл и ток выключения Iвыкл. при которых фототиристор переходит из открытого состояния в закрытое; темновой ток IТ ; пусковой поток Фпуск ; минимальный управляющий (пороговый) световой поток; интегральная чувствительность; время выключения tвыкл ; номинальный ток открытого фототиристора Iном ; максимально допустимое обратное анодное напряжение Uобр макс .

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

/ Реферат — Фоторезисторы

В наши дни прогресс в различных областях науки и техники немыслим без приборов оптической электроники. Оптическая электроника уже давно играет ведущую роль в жизни человека. А с каждым годом ее внедрение во все сферы человеческой деятельности становится все интенсивнее. И этому есть свои причины. Устройства оптоэлектроники имеют ряд отличий от других устройств.

Можно выделить следующие их достоинства.

а) Высокая информационная емкость оптического канала, связанная с тем, что частота световых колебаний (около 1015 Гц) в 103-104 раз выше, чем в освоенном радиотехническом диапазоне. Малое значение длины волны световых колебаний обеспечивает высокую достижимую плотность записи информации в оптических запоминающих устройствах (до 108 бит/см2).

б) Острая направленность светового излучения, обусловленная тем, что угловая расходимость луча пропорциональна длине волны и может быть меньше одной минуты. Это позволяет концентрированно и с малыми потерями передавать электромагнитную энергию в заданную область пространства. В малогабаритных электронных устройствах лазерный луч может быть направлен на фоточувствительные площадки микронных размеров.

в) Возможность двойной – временной и пространственной модуляции светового луча. Минимальная элементарная площадка в плоскости, перпендикулярной направлению распространения. Это позволяет производить параллельную обработку информацию, что очень важно при создании высокопроизводительных комплексов.

г) Так как источник и приемник в оптоэлектронике не связаны друг с другом электрически, а связь между ними осуществляется только посредством светового луча (электрически нейтральных фотонов), они не влияют друг на друга. И поэтому в оптоэлектронном приборе поток информации передается лишь в одном направлении – от источника к приемнику. Каналы, по которым распространяется оптическое излучение, не воздействуют друг на друга и практически не чувствительны к электромагнитным помехам (отсюда и высокая помехозащищенность).

д) возможность непосредственного оперирования со зрительно воспринимаемыми образами: фотосчитывание, визуализация (например, на жидких кристаллах).

Любое оптоэлектронное устройство содержит фотоприемный блок.

Фотоприемник предназначен для преобразования светового излучения в электрические сигналы. В качестве фотоприемников могут быть использованы:

Фототиристор

В основе принципа действия фототиристора лежит явление генерации носителей заряда в полупроводнике, точнее» в р-п переходе II находящемся под воздействием светового потока. Для управления фототиристором в иго корпусе предусмотрено окно для пропускания светового потока. Существенным преимуществом фототиристоров перед тиристорами, управляемыми электрическим сигналом, является отсутствие гальванической связи между силовыми приборами и системой их управления.

Фототиристор — оптоэлектронный прибор, имеющий структуру, схожую со структурой обычного тиристора и отличается от последнего тем, что включается не напряжением, а светом, освещающим затвор. При освещении фототиристора в полупроводнике генерируются носители заряда обоих знаков (электроны и дырки), что приводит к увеличению тока через тиристор на величину фототока.

Фототиристор имеет четырехслойную р-n-р-n-структуру, которую, как и в обычном тиристоре, можно представить в виде комбинации двух транзисторов, имеющих положительную обратную связь по току. Переход фототиристора под действием светового управляющего сигнала из закрытого состояния в открытое осуществляется при достижении уровня тока срабатывания Iср скачком после преодоления определенного потенциального барьера (см. ВАХ фототиристора на рис. 1).

Принцип действия фототиристора: Если к аноду приложено положительное (по отношению к катоду) напряжение, то в темновом режиме крайние переходы окажутся смещенными в прямом, а средний переход — в обратном направлении, и фототиристор будет находиться в закрытом состоянии. При освещении перехода в тонкой базе происходит генерация пар электрон-дырка. Электроны с поверхности диффундируют в глубь дырочного слоя и свободно проходят через средний переход к аноду. При определенной интенсивности светового излучения, соответствующей световой мощности (1—10) •10

2 Вт/см^, концентрация электронов возрастает, вызывая лавинообразное умножение носителей заряда с последующим включением фототиристора. Максимумспектральной чувствительности лежит в диапазоне 0,9-1,1 мкм

Основное достоинство фототиристоров — способность переключать значительные токи и напряжения слабыми световыми сигналами — используется в устройствах «силовой» оптоэлектроники, таких, как системы управления исполнительными механизмами, выпрямителями и преобразователями.

Этот прибор применяется в управляемых светом выпрямителях и наиболее эффективен в управлении сильными токами при высоких напряжениях. Скорость отклика на свет — менее 1 мкс.

Фототиристоры обычно изготавливают из кремния, и спектральная характеристика у них такая же как и у других кремниевых светочуствительных элементов.

Как и фототранзисторы, фототиристоры часто применяются совместно с подобранными по характеристикам излучателями, в виде оптопар.

В отличие от транзисторных тиристорные оптопары позволяют усиливать информационный сигнал не только по току, но и по мощности, поскольку приспособлены для работы при напряжениях на входе и выходе, отличающихся на порядки — как, например, в случае, иллюстрируемом на рис. 2.

на входе сигнал уровня 5 В (компьютерный) превращается на выходе в 220 В переменного тока. Такая тиристорная оптопара в свою очередь может использоваться для управления тиристорами на десятки киловольт или сотни ампер (например, в энергетических сетях).

Рис. 2. Тиристорные оптопары в схеме управления двигателем

Фототиристор

Представить параметры тиристорных оптопар малой и средней мощности можно на примере характеристик оптопары АОУ115Д (предельные электрические параметры при Tокр = +25°С):

Входной постоянный ток, мА

Фототиристором называют специальный тиристор, в корпусе которого (в случае дискретного исполнения) предусмотрено окно, в которое вместо подачи сигнала на управляющий электрод подаётся сигнал в виде потока лучистой энергии (рис. 5.17). При облучении всего полупроводникового кристалла, либо только участка между катодом и управляющим электродом тиристора под действием фотонов возникает фотогенерация носителей заряда, и чем интенсивнее будет световой поток, тем больше станет ток, протекающий по тиристору. При достаточной освещённости ток через выводы анод-катод тиристора лавинообразно возрастает, что вызывает открывание тиристора. Длительность включения фототиристоров может достигать несколько микросекунд. Следует отметить, что спектр света, которым облучают полупроводниковую структуру, должен быть согласован с определённой длиной волны, к облучению которой фототиристор максимально чувствителен. Материалом фототиристоров, как и типовых тиристоров, обычно выступает кремний. Редко в качестве основного материала маломощных быстродействующих тиристоров выступает арсенид галлия. Все остальные характеристики такого тиристора аналогичны характеристикам обычного тиристора с электрическим управлением.

Фототиристор

Рис. 5.17. Структура фототиристора -а и его условное графическое обозначение -б (рисунок выполнен авторами)

На рис. 5.18 представлена вольт-амперная характеристика фототиристора. Фототиристоры используются для коммутации световым сигналом электрических сигналов большой мощности. Сопротивление фототиристора изменяется от 10 8 Ом (в запертом состоянии) до 10 -1 Ом в открытом состоянии. Время переключения тиристоров лежит в пределах 10 -5. 10 -6 секунды.

Фототиристор

Рис. 5.18. Вольт-амперная характеристика фототиристора (рисунок выполнен авторами)

Некоторые фототиристоры позволяют коммутировать токи силой до сотен ампер при напряжениях анод-катод в десятки киловольт и обеспечивают гальваническую развязку системы управления и исполнительной цепи. В результате между устройством управления и фототиристором не нужно включать дорогой, ненадёжный и крупногабаритный высоковольтный трансформатор, который был бы необходим для гальванической развязки обычного тиристора, включённого в цепь с высоким напряжением относительно земли (Москатов, 2010).

Фототиристоры.

Фототиристоры используются для коммутации световым сигналом электрических сигналов большой мощности. Они представляют собой фотоэлектрические аналоги управляемого тиристора. Одна из возможных конструкций фототиристора и схема его включения показаны на рис. 3.16, а, б.

Фототиристор имеет четырехслойную -структуру, у которой переходы смещены в прямом направлении, а коллекторный переход — в обратном.

Свет обычно попадает на обе базы тиристора — слои . При этом с ростом освещенности возрастают эмиттерные токи, что приводит к увеличению коэффициентов а. Другими словами, основное отличие фототиристоров от обычных тиристоров заключается в том, что в фототиристорах коэффициенты передачи тока а, хотя и косвенно, являются функцией освещенности. Вольт-амперная характеристика типового фототиристора имеет вид, показанный на рис. 3.16, в. Сопротивление фототиристора изменяется от 108 Ом (в запертом) до в открытом состоянии. Время переключения тиристоров лежит в пределах с.

Таким образом, фототиристоры позволяют с помощью светового луча управлять значительными мощностями.

© Научная библиотека

Копирование информации со страницы разрешается только с указанием ссылки на данный сайт

Рассмотрим устройства, основные физические процессы, характеристики и параметры фотодиода.

Устройство и основные физические процессы.

Изобразим упрощенную структуру фотодиода (рис. 1.126, а) и его условное графическое обозначение (рис. 1.126, б).

Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.

Электрическое поле p-n-перехода разделяет электроны и дырки. Неосновные носители электричества, для которых поле является ускоряющим, выводятся этим полем за переход. Основные носители задерживаются полем в своей области проводимости.

Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения u ак между анодом и катодом при разомкнутой цепи. Причем в соответствии со сделан­ным замечанием о разделении электронов и дырок u ак > 0 (дырки переходят к аноду, а электроны — к катоду).

Характеристики и параметры.

Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).

Обратимся к вольт-амперным характеристикам (ВАХ) фотодиода (рис. 1.127).

Фототиристор

Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n-перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n-перехода носители электрода движутся к электродам (дырки — к электроду слоя p. электроны — к электроду слоя n ). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.

На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).

Режим фотогенератора имеет место при u > 0 и i < 0 (четвертый квадрант). При этом диод отдает энергию во внешнюю цепь ( u · i < 0). В этом режиме работают солнечные элементы. В настоящее время коэффициент полезного действия солнечных элементов достигает 20%. Пока энергия, вырабатываемая солнечными элементами, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана. Но ожидается, что стоимость энергии, получаемой с помощью солнечных батарей, будет снижаться.

Режим фотопреобразователя соответствует соотношениям u < 0 и i < 0 (третий квадрант). В этом режиме фотодиод потребляет энергию ( u · i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 1.128).

Фототиристор

Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображают в первом квадранте (рис. 1.129).

Фототиристор

Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 10 7 — 10 10 Гц. Фотодиод часто используется в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки). Изобразим соответствующие току светодиода 20 мА характеристики фотодиода, входящего в оптопару АОД112А-1 (рис. 1.130, а).

Фототиристор

При этом ток i и напряжение u фотодиода соответствуют обычным для диодов условно-положительным направлениям (рис. 1.130,6).

Фототранзистор и фототиристор

Выходные характеристики фототранзистора подобны выходным характеристикам обычного биполярного транзистора, но теперь положение характеристик определяется не током базы, а уровнем освещенности (или величиной светового потока).

Свойства фототиристора подобны свойствам обычного тиристора, однако с той лишь особенностью, что включение тиристора осуществляется не с помощью импульса тока управления, а с помощью светового импульса.

Оптрон — полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенные в одном корпусе и связанные между собой оптически, электрически или одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.

В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 10 7. 10 8 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что и обусловливает широкую применимость резисторных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие — 0,01. 1 с.

В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей — тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5. 50 мкс. Для некоторых оптронов это время меньше.

Рассмотрим несколько подробнее оптопару светодиод-фотодиод. Дадим условное графическое обозначение этой оптопары (рис. 1.131, а).

Фототиристор

Напомним, что излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод — в прямом (режим фотогенератора) или в обратном направлении (режим фотопреобразователя).

Воспользуемся общепринятым выбором условно-положительных направлений для токов и напряжений диодов оптопары (рис. 1.131,6).

Изобразим зависимость тока iвых от тока iвx при u вых = 0 для оптопары АОД107А (рис. 1.132).

Фототиристор

Указанная оптопара предназначена для работы как в фотогенераторном, так и в фотопреобразовательном режиме.

К основным типам индикаторов относятся:

● полупроводниковые индикаторы (ППИ),

● вакуумные люминесцентные индикаторы (ВЛИ),

● газоразрядные индикаторы (ГРИ)

● жидкокристаллические индикаторы (ЖКИ).

Простейшими ППИ являются светодиоды. Помимо них выпускаются цифровые и буквенно-цифровые, одно- и многоразрядные, шкальные и матричные ППИ. Они характеризуются высокой яркостью, большим сроком службы, низким рабочим напряжением, имеют малую инерционность и очень стойки к механическим воздействиям.

ВЛИ представляют собой вакуумный триод, содержащий прямонакальный катод, сетку и несколько анодов, покрытых люминофором и расположенных в одной плоскости. При подаче напряжения накала катод испускает электроны, которые под действием электрических полей сетки и анодов устремляются к анодам, и люминофор анодов начинает светиться.

Индикаторы этого типа обладают большой яркостью и долговечностью, незначительной потребляемой мощностью и хорошо сопрягаются с микросхемами на МДП-структурах.

Газоразрядные индикаторы до появления ВЛИ и ППИ были основными приборами техники индикации. И сейчас они широко применяются из-за высокой яркости, малой потребляемой мощности и высокого быстродействия. Но значительные рабочие напряжения (сотни вольт) не позволяют подключить ГРИ непосредственно к микросхемам.

Практически все ГРИ представляют собой газоразрядные диоды, содержащие один или несколько катодов и анод. При увеличении разности потенциалов между анодом и некоторым катодом ток через такой диод резко возрастает, а газ начинает светиться.

ЖКИ имеют небольшие размеры, питаются от источника с низким напряжением, потребляют очень малую мощность (не более 100 мкВт) и обеспечивают хорошую четкость знаков при самом различном наружном освещении.

Поясним подробнее, что же такое жидкие кристаллы. Среди большого количества различных веществ, находящихся в жидком состоянии, значительная часть состоит из молекул, имеющих форму нити. Под воздействием электрического поля и в определенном диапазоне температур (10. 55°С) в таких веществах возникает специфический эффект динамического рассеивания, в результате которого их коэффициент преломления (как для проходящего, так и для отраженного света) изменяется, и жидкость, непрозрачная в нормальном состоянии, начинает пропускать свет (она оказывается подобной твердому кристаллу). Таким образом, сами жидкокристаллические индикаторы света не излучают. Для них необходимы источники постороннего света той или иной длины волны.

Рекомендуйте эту статью другим!

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *