Условия возникновения колебаний

Условия возникновения колебаний

Колебательные системы >9gt;

Условия возникновения колебаний

Условия возникновения колебаний. Наличие положения устойчивого равновесия; Наличие силы, зависящей от координаты; Наличие в системе избыточной энергии; Достаточно малые силы сопротивления.

Слайд 9 из презентации «Колебательное движение» к урокам физики на тему «Колебания»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке физики, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Колебательное движение.ppt» можно в zip-архиве размером 124 КБ.

краткое содержание других презентаций о колебаниях

«Физический и математический маятник» — Принято различать: Презентация по теме: «Маятник». Математический маятник. Выполнила Юнченко Татьяна. Математический маятник физический маятник. Маятник.

«Звуковой резонанс» — То же получается и с двумя одинаково настроенными струнами. Проведя смычком по одной струне, мы вызовем колебанья и другой. Приведя в колебание один камертон, можно заметить, что и другой камертон зазвучит сам собою. Понятие. Подготовил: Великая Юлия Проверил: Сергеева Елена Евгеньевна МОУ «СОШ №36» 2011 год.

«Колебательное движение» — Крайнее левое положение. Качели. Примеры колебательных движений. Условия возникновения колебаний. Амплитудное смещение. V=max а=0 м/с. Игла швейной машинки. Колебательное движение. Положение равновесия. Ветки деревьев. V=0 м/с а=max. Крайнее правое положение. Рессоры вагона. Маятник часов. Особенность колебательного движения.

«Урок механические колебания» — Виды маятников. К положению равновесия. Свободные колебания. Г. Клин, Московская область 2012. Пример: маятник. Виды колебательных систем 3. Основное свойство колебательных систем 4. Свободные колебания. Презентация к уроку по физике. Выполнила: учитель физики Демашова Людмила Антоньевна. 6. Колебательная система – система тел, способных совершать колебательные движения.

«Колебания маятника» — Косинуса. «Мир, в котором мы живем, удивительно склонен к колебаниям» Р. Бишоп. Виды колебаний. Основные характеристики колебательного процесса (движения). Тесты по математическому и пружинному маятнику. 7. Грузик, подвешенный на пружине, вывели из положения равновесия и отпустили. Единица измерения (секунда с).

«Физика механические колебания» — Поговорим о колебаниях… Параметры механических колебаний. Показывает максимальное смещение тела от положения равновесия. Колебательные системы. «В замке был веселый бал, Музыканты пели. Период. Видеозадача. Бажина Г.Г. – учитель физики МОУ «ГИМНАЗИЯ№11» г. Красноярска. Ветерок в саду качал Легкие качели» Константин Бальмонт.

Всего в теме «Колебания» 14 презентаций

Колебания в биологических объектах

Лекция. 1. Колебания. Форма колебаний. Виды колебаний. Классификация. Характеристики колебательного процесса. Условия возникновения механических колебаний. Гармонические колебания.

Колеба́ния — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т. д. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электро­магнитные и др. Однако различные колебательные процессы описываются одинаковы­ми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы.

Форма колебаний может быть разной.

Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени рис.1. (В противном случае колебания называются апериодическими). Выделяют важный частный случай гармонических колебаний (рис.1).

Колебания, приближающиеся к гармоническим называются квазигармоническими.

Условия возникновения колебаний

Рис.1. Виды колебаний

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны c волнами. Исследованиями этих закономерностей занимается обобщённая теория колебаний и волн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, локальные, «местные» преобразования энергии.

Виды колебаний.Колебания различаютс я по природе:

механические (движение, звук, вибрация),

электромагнитные (например, колебания в колебательном контуре, объёмном резонаторе, колебания напряжённостей электрического и магнитного полей в радиоволнах, волнах видимого света и любых др. электромагнитных волнах),

электромеханические (колебания мембраны телефона, пьезокварцевого или магнитострикционного излучателя ультразвука);

химические (колебания концентрации реагирующих веществ, при так называемых периодических химических реакциях);

термодинамические (например, так называемое поющее пламя и др. тепловые автоколебания, встречающиеся в акустике, а также в некоторых типах реактивных двигателей);

колебательные процессы в космосе (большой интерес в астрофизике представляют колебания яркости звезд цефеид (пульсирующие переменные звезды сверхгиганты, изменяющие блеск с амплитудой от 0,5 до 2 звезной величины и периодом от 1 до 50 суток);

Таким образом, колебания охватывают огромную область физических явлений и технических процессов.

Классификация колебаний по характеру взаимодействия с окружающей средой :

свободные (или собственные) — это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания почти всегда затухающие).

Например, колебания груза на пружине, маятника, моста, корабля на волне, струны; колебания плазмы, плотности и давления воздуха при распространении в нём упругих (акустических) волн.

Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвает затухание).

вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.

автоколебания — колебания, при которых система имеет запас потенциальной энергии, расходующейся на совершение колебаний (пример такой системы — механические часы). Характерным отличием автоколебаний от свободных колебаний является, то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.

параметрические — колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия,

случайные — колебания, при которых внешняя или параметрическая нагрузка является случайным процессом,

связанные колебания — свободные колебания взаимно связанных систем. состоящих из взаимодействующих одиночных колебательных систем. Связанные колебания имеют сложный вид вследствие того, что колебания в одной системе влияют через связь (в общем случае диссипативную и нелинейную) на колебания в другой

колебания в структурах с распределенными параметрами (длинные линии, резонаторы),

флуктуационные. происходящие в результате теплового движения вещества.

Условия возникновения колебаний .

1. Для возникновения колебания в системе необходимо вывести её из положения равновесия. Например, для маятника сообщив ему кинетическую (удар, толчок), либо – потенциальную (отклонение тела) энергию.

2. При выведении тела из положения устойчивого равновесия возникает равнодействующая сила, направленная к положению равновесия.

С энергетической точки зрения это значит, что возникают условия для постоянного перехода (кинетической энергии в потенциальную, энергии электрического поля в энергию магнитного поля и обратно.

3. Потери энергии системы за счет перехода в другие виды энергии (часто в тепловую энергию) малы.

Характеристики колебательного процесса .

На рис.1 представлен график периодического изменения функции F(x), которое характеризуется параметрами:

Амплитудамаксимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы.

Период — наименьший промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), T (c).

Условия возникновения колебаний

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

/ Школа / ОК-1 Механические колебания

ОК-1 Механические колебания

Механические колебания — это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

Вынужденные колебания — это колебания, которые происходят под действием внешней, периодически изменяющейся силы.

Свободные колебания — это колебания, которые возникают в системе под действием внутренних сил, после того как система была выведена из положения устойчивого равновесия.

Условия возникновения колебаний Условия возникновения колебаний Условия возникновения колебаний Условия возникновения колебаний

Условия возникновения механических колебаний

1. Наличие положения устойчивого равновесия, при котором равнодействующая равна нулю.

2. Хотя бы одна сила должна зависеть от координат.

3. Наличие в колеблющейся материальной точке избыточной энергии.

4. Если вывести тело из положения равновесия, то равнодействующая не равна нулю.

5. Силы трения в системе малы.

Превращение энергии при колебательном движении

Условия возникновения колебаний

За полное колебание Условия возникновения колебаний.

Выполняется закон сохранения энергии.

Параметры колебательного движения

1 Условия возникновения колебаний. Смещениех — отклонение колеблющейся точки от положения равновесия в данный момент времени.

2. Амплитудах0 — наибольшее смещение от положения равновесия.

3. ПериодТ — время одного полного колебания. Выражается в секундах (с).

4. Частотаν — число полных колебаний за единицу времени. Выражается в герцах (Гц).

Условия возникновения колебаний, Условия возникновения колебаний; Условия возникновения колебаний.

Свободные колебания математического маятника

Математический маятник – модель – материальная точка, подвешенная на нерастяжимой невесомой нити.

Запись движения колеблющейся точки как функции времени.

В Условия возникновения колебанийыведем маятник из положения равновесия. Равнодействующая (тангенциальная)Fт = –mg sinα. т. е.Fт – проекция силы тяжести на касательную к траектории тела. Согласно второму закону динамикиmaт =Fт. Так как уголα очень мал, тоmaт = –mg sinα .

Условия возникновения колебаний

Условия возникновения колебаний.

s в сторону равновесия.

Ускорение а материальной точки математического маятника пропорционально смещениюs.

Таким образом, уравнение движения пружинного и математического маятников имеют одинаковый вид: а

Период колебания

Пружинный маятник

Предположим, что собственная частота колебаний тела, прикрепленного к пружине, Условия возникновения колебаний.

Период свободных колебаний Условия возникновения колебаний.

Циклическая частота ω = 2πν .

С Условия возникновения колебанийобственная частота математического маятника Условия возникновения колебаний.

Законы колебаний математического маятника

1. При небольшой амплитуде колебаний период колебания не зависит от массы маятника и амплитуды колебаний.

2. Период колебания прямо пропорционален корню квадратному из длины маятника и обратно пропорционален корню квадратному из ускорения свободного падения.

П Условия возникновения колебанийростейший вид периодических колебаний, при которых периодические изменения во времени физических величин происходят по закону синуса или косинуса, называют гармоническими колебаниями:

где х — смещение в любой момент времени;х0 — амплитуда колебаний;

Уравнение x =x0 cos(ωt+φ0 ), описывающее гармонические колебания, является решением дифференциального уравненияx« +ω 2 x = 0.

Дважды продифференцировав это уравнение, получим:

Если какой-либо процесс можно описать уравнением x« +ω 2 x = 0, то совершается гармоническое колебание с циклической частотойω и периодом Условия возникновения колебаний.

Таким образом, при гармонических колебаниях скорость и ускорение также изменяются по закону синуса или косинуса .

Преобразование энергии при гармонических колебаниях

Если колебания тела происходят по закону x0 sin(ωt+φ0 ), токинетическая энергия тела равна :

Условия возникновения колебаний.

Потенциальная энергия тела равна. Условия возникновения колебаний.

Так как k = 2. то Условия возникновения колебаний.

За нулевой уровень отсчета потенциальной энергии выбирается положение равновесия тела (х = 0).

Полная механическая энергия системы равна: Условия возникновения колебаний.

ОК-3 Кинематика гармонических колебаний

Условия возникновения колебаний Условия возникновения колебаний

Фаза колебаний φ — физическая величина, которая стоит под знакомsinилиcosи определяет состояние системы в любой момент времени согласно уравнениюх =x0 cosφ .

Время в долях периода

Смещение х тела в любой момент времени

x Условия возникновения колебаний=x0 cos(ωt+φ0 ), гдеx0 — амплитуда;φ0 — начальная фаза колебаний в начальный момент времени (t = 0), определяет положение колеблющейся точки в начальный момент времени.

Скорость и ускорение при гармонических колебаниях

Е Условия возникновения колебанийсли тело совершает гармонические колебания по законуx =x0 cosωt вдоль осиОх. то скорость движения телаvx определяется выражением Условия возникновения колебаний.

Более строго, скорость движения тела — производная координаты х по времениt :

v Условия возникновения колебанийx =x (t ) = − sinω =x0ω0ω cos(ωt /2).

Условия возникновения колебаний Условия возникновения колебаний

езкое возрастание амплитуды вынужденных колебаний тела при совпадении частотыωFизменения действующей на это тело внешней силы с собственной частотойωссвободных колебаний данного тела — механический резонанс. Амплитуда возрастает, еслиωFωс ; становится максимальной приωс =ωF (резонанс).

Возрастание x0 при резонансе тем больше, чем меньше трение в системе. Кривые1 ,2 ,3 соответствуют слабому, сильному критическому затуханию:Fтр3 >Fтр2 >Fтр1 .

При малом трении резонанс острый, при большом трении тупой. Амплитуда при резонансе равна: Условия возникновения колебаний, гдеFmax — амплитудное значение внешней силы;μ — коэффициент трения.

Машины для утрамбовки бетона.

Борьба с резонансом

Уменьшить резонанс можно, увеличив силу трения или

На мостах поезда движутся с определенной скоростью.

Колебания – процессы (изменения состояния), обладающие той или иной повторяемостью во времени.

Механические колебания – движения, которые точно или приблизительно повторяются во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени. (В противном случае колебания наз. апериодическими).

Условия возникновения колебаний

Примеры колебаний, изображенные на рисунках: колебания математического маятника, колебания жидкости в U -образной трубке, колебания тела под действием пружин, колебания натянутой струны.

Условия возникновения механических колебаний

  1. Хотя бы одна сила должна зависеть от координат.
  2. При выведении тела из положения устойчивого равновесия возникает равнодействующая, направленная к положению равновесия. С энергетической точки зрения это значит, что возникают условия для постоянного перехода кинетической энергии в потенциальную и обратно.
  3. Силы трения в системе малы.

Условия возникновения колебаний

Для возникновения колебания тело необходимо вывести из положения равновесия, сообщив либо кинетическую энергию (удар, толчок), либо – потенциальную (отклонение тела).

Примеры колебательных систем:

Условия возникновения колебаний

Свободные колебания — это колебания, которые возникают в системе под действием внутренних сил, после того как система была выведена из положения устойчивого равновесия. В реальной жизни все свободные колебания являются затухающими (т.е. их амплитуда. размах, уменьшается с течением времени).

Вынужденные колебания – колебания, которые происходят под действием внешней периодической силы.

Характеристики колебательного процесса.

1. Смещениех — отклонение колеблющейся точки от положе­ния равновесия в данный момент времени (м ).

2. Амплитуда хм — наиболь­шее смещение от положения рав­новесия (м ). Если колебания незатухающие, то амплитуда постоянна.

3. Период Т — время, за которое совершается одно полное колебание. Выражается в секундах (с ).

За время, равное одному периоду (одно полное колебание) тело совершает перемещение, равное 0 и проходит путь, равный 2πr .

4. Частотаν — число полных колеба­ний за единицу времени. В СИ измеряется в герцах (Гц).

Частота колебаний равна одному герцу, если за 1 секунду совершается 1 полное колебание. 1 Гц= 1 с -1 .

5. Циклической (круговой) частотой ω периодических колебаний наз. число полных колебаний, которые совершаются за единиц времени (секунд). Единица измерения – с -1 .

6. Фаза колебания — φ — физическая величина, определяющая смещение x в данный момент времени. Измеряется в радианах (рад).

Фаза колебания в начальный момент времени (t=0) называется начальной фазой (φ0 ).

§ 24.2. Условия возникновения колебаний.

Выясним, при соблюдении каких условий возникает и поддерживается в течение некоторого времени колебательное движение.

Первым условием, необходимым для возникновения колебаний, является наличие у материальной точки избыточной энергии (кинетической или потенциальной) по сравнению с ее энергией в положении устойчивого равновесия (§ 24.1).

Второе условие можно установить, проследив за движением груза 3 на рис. 24.1. В положении б на груз 3 действует сила упругости направленная к положению равновесия груза (см. рис. 24.1, б). действием этой силы груз смещается к положению равновесия с постепенно возрастающей скоростью движения V, а сила уменьшается и исчезает, когда груз попадает в это положение (рис. 24.1, в). Скорость груза в этот момент максимальна по величине, и груз, проскакивая через положение равновесия, продолжает двигаться вправо. При этом возникает сила упругости которая тормозит движение груза 3 и останавливает его (рис. 24.1, г). Сила в этом положении имеет максимальную величину; под действием этой силы груз 3 начинает двигаться влево. В положении равновесия (рис. 24.1, 5) сила исчезает, а скорость груза достигает, наибольшего значения, поэтому груз продолжает двигаться влево, пока не займет положение на рис. 24.1. Далее весь описанный процесс повторяется снова в том же порядке.

Таким образом, колебания груза 3 происходят вследствие действия силы и наличия у груза инерции. Силу, приложенную к

матермальной точке, всегда направленную к положению устойчивого равновесия точки, называют возвращающей силой. В положении устойчивого равновесия возвращающая сила равна нулю и возрастает по мере удаления точки от этого положения.

Итак, вторым условием, необходимым для возникновения и продолжения колебаний материальной точки, является действие на материальную точку возвращающей силы. Напомним, что. эта сила всегда возникает, когда какое-либо тело выводится из положения устойчивого равновесия.

В идеальном случае, при отсутствии трения и сопротивления среды, полная механическая энергия колеблющейся точки остается постоянной, так как в процессе таких колебаний происходит лишь переход кинетической энергии в потенциальную и обратно. Такое колебание должно продолжаться неопределенно долгое время.

Если колебания материальной точки происходят при наличии трения и сопротивления среды, то полная механическая энергия материальной точки постепенно убывает, размах колебаний уменьшается и через некоторое время точка останавливается в положении устойчивого равновесия.

Бывают случаи, когда потери энергии материальной точкой настолько велики, что если внешняя сила отклоняет эту точку из положения равновесия, то она теряет всю свою избыточную энергию при возвращении в положение равновесия. В этом случае колебаний не получится. Итак, третье условие, необходимое для возникновения и продолжения колебаний, следующее: избыточная энергия, полученная материальной точкой при смещении из положения устойчивого равновесия, не должна полностью расходоваться на преодоление сопротивления при возвращении в это положение.




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *