Уравнение максвелла

Уравнение максвелла
Главная | О нас | Обратная связь

Уравнения Максвелла для электромагнитного поля

Введение Максвеллом понятия тока сме­щения привело его к завершению создан­ной им единой макроскопической теории электромагнитного поля, позволившей с единой точки зрения не только объяснить электрические и магнитные явления, но и предсказать новые, существование кото­рых было впоследствии подтверждено.

В основе теории Максвелла лежат рас­смотренные выше четыре уравнения:

1. Электрическое поле (см. § 137) мо­жет быть как потенциальным (eq ), так и вихревым (ЕB ), поэтому напряженность суммарного поля Е =ЕQ +ЕB. Так как циркуляция вектора eq равна нулю (см. (137.3)), а циркуляция вектора ЕB оп­ределяется выражением (137.2), то цир­куляция вектора напряженности суммар­ного поля

Уравнение максвелла

Это уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н (см. (138.4)):

Уравнение максвелла

Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами (электрическими то­ками), либо переменными электрическими полями.

3. Теорема Гаусса для поля D :

Уравнение максвелла

Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью r, то формула (139.1) запишется в виде

Уравнение максвелла

4. Теорема Гаусса для поля В (см. (120.3)):

Уравнение максвелла

Итак, полная система уравнений Максвел­ла в интегральной форме:

Уравнение максвелла Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь (изотропные не сегнетоэлектрические и не ферромагнитные среды):

где e0 и m0 — соответственно электриче­ская и магнитная постоянные, e и m— соответственно диэлектрическая и магнит­ная проницаемости, g — удельная прово­димость вещества.

Из уравнений Максвелла вытекает, что источниками электрического поля мо­гут быть либо электрические заряды, либо изменяющиеся во времени магнитные по­ля, а магнитные поля могут возбуждаться либо движущимися электрическими заря­дами (электрическими токами), либо пере­менными электрическими полями. Уравне­ния Максвелла не симметричны относи­тельно электрического и магнитного полей. Это связано с тем, что в природе су­ществуют электрические заряды, но нет зарядов магнитных.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид

Уравнение максвелла т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го — только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса

Уравнение максвелла можно представить полную систему урав­нений Максвелла в дифференциальной форме (характеризующих поле в каждой точке пространства):

Уравнение максвелла

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла — интегральная

и дифференциальная — эквивалентны. Однако когда имеются поверхности разры­ва — поверхности, на которых свойства среды или полей меняются скачкообразно, то интегральная форма уравнений являет­ся более общей.

Уравнения Максвелла в дифференци­альной форме предполагают, что все вели­чины в пространстве и времени изменяют­ся непрерывно. Чтобы достичь математи­ческой эквивалентности обеих форм урав­нений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электро­магнитное поле на границе раздела двух сред. Интегральная форма уравнений Максвелла содержит эти условия. Они были рассмотрены раньше (см. § 90, 134):

(первое и последнее уравнения отвечают случаям, когда на границе раздела нет ни свободных зарядов, ни токов прово­димости).

Уравнения Максвелла — наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом — они образуют единое электромагнитное поле.

Теория Максвелла, являясь обобщени­ем основных законов электрических и маг­нитных явлений, смогла объяснить не только уже известные экспериментальные факты, что также является важным ее следствием, но и предсказала новые явле­ния. Одним из важных выводов этой тео­рии явилось существование магнитного поля токов смещения (см. § 138), что по­зволило Максвеллу предсказать существо­вание электромагнитных волн — перемен­ного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света с = 3•10 8 м/с. Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвел­ла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны. Электромагнитные волны на опыте были получены немецким физиком Г. Герцем (1857—1894), доказавшим, что законы их возбуждения и распространения полно­стью описываются уравнениями Максвел­ла. Таким образом, теория Максвелла была экспериментально подтверждена.

К электромагнитному полю применим только принцип относительности Эйнштей­на, так как факт распространения электро­магнитных волн в вакууме во всех системах отсчета с одинаковой скоростью с не совместим с принципом относительности Галилея.

Согласно принципу относительности Эйнштейна, механические, оптические и электромагнитные явления во всех инер­циальных системах отсчета протекают одинаково, т. е. описываются одинаковыми уравнениями. Уравнения Максвелла инва­риантны относительно преобразований Ло­ренца: их вид не меняется при переходе

от одной инерциальной системы отсчета к другой, хотя величины Е, В, D, Н в них преобразуются по определенным прави­лам.

Из принципа относительности вытека­ет, что отдельное рассмотрение электри­ческого и магнитного полей имеет относи­тельный смысл. Так, если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь непод­вижными относительно одной инерциаль­ной системы отсчета, движутся относи­тельно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвиж­ный относительно одной инерциальной системы отсчета проводник с постоянным током, возбуждая в каждой точке про­странства постоянное магнитное поле, дви­жется относительно других инерциальных систем, и создаваемое им переменное маг­нитное поле возбуждает вихревое электри­ческое поле.

Таким образом, теория Максвелла, ее экспериментальное подтверждение, а так­же принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, базиру­ющейся на представлении об электромаг­нитном поле.

39. Уравнения Максвелла в интегральной форме.

Введение Максвеллом понятия полного тока смещения привело его к завершению созданной им макроскопической теории электромагнитного поля, позволившей с единой точки зрения объяснить электрические и магнитный явления и предсказать новые.

В основе теории Максвелла лежат четыре уравнения, полученные нами ранее:

1. Циркуляция вектора напряженности суммарного поля Уравнение максвелла(циркуляция вектора Уравнение максвелларавна нулю):

Это уравнение показывает, что источниками электрического поля могут быть не только электрические заряды, но и изменяющиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Уравнение максвелла:

Это уравнение показывает, что магнитные поля могут возбуждаться либо движущимися зарядами (электрическими токами), либо переменными электрическими полями.

3. Теорема Гаусса для поля Уравнение максвелла:

или, если заряд распределен внутри замкнутой поверхности непрерывно с объемной плотностью ρ:

Это уравнение показывает, что в природе существуют электрические заряды.

4. Теорема Гаусса для поля Уравнение максвелла:

Это уравнение показывает, что в природе не существуют магнитные заряды.

Дополнительные уравнения, используемые с уравнениями Максвелла. Величины, входящие в уравнения Максвелла, не являются независимыми и между ними существует связь:

Уравнение максвелла

где Уравнение максвелла— напряженность электрического поля; Уравнение максвелла— магнитная индукция; Уравнение максвелла— электрическое смещение; Уравнение максвелла— напряженность магнитного поля; Уравнение максвелла— плотность тока проводимости; γ – удельная проводимость вещества; Уравнение максвеллаи Уравнение максвелла– электрическая и магнитная постоянная; ε и μ – электрическая и магнитная проницаемости.

Совокупность этих 7 уравнений составляют основу электродинамики покоящихся сред .

Уравнения Максвелла для стационарных полей ( Уравнение максвелла Уравнение максвелла).

Источниками электрического поля являются только электрические заряды, источниками магнитного поля – только токи проводимости. В этом случае электрические и магнитные поля независимы друг от друга, что позволяет изучать отдельно постоянные электрическое и магнитное поля.

40. Уравнения Максвелла в дифференциальной форме

Теоремы векторного анализа, используемые при переходе от интегральной формы уравнения к дифференциальной

1. Теорема Стокса: зная ротор вектора Уравнение максвеллав каждой точке некоторой поверхностиS можно вычислить циркуляцию этого вектора по контуру L. ограничивающему S :

Уравнение максвелла.

Уравнение максвелла.

2.Теорема Гаусса: зная дивергенцию вектора Уравнение максвеллав каждой точке пространства, можно вычислить поток этого вектора через произвольную замкнутую поверхностьS конечных размеров.

Уравнение максвелла.

Уравнение максвелла;

Уравнение максвелла.

Уравнения Максвелла в дифференциальной форме характеризуют поле в каждой точке пространства. Физический смысл уравнений Максвелла в дифференциальной форме тот же, что и уравнения Максвелла в интегральной.

Если заряды и токи распределены в пространстве непрерывно, то обе формы уравнений Максвелла эквивалентны. Однако, если имеются поверхности разрыва (поверхности, на которых свойства среды меняются скачкообразно), то интегральная форма уравнений является более общей.

Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Чтобы достичь математической эквивалентности обеих форм уравнений Максвелла, дифференциальную форму дополняют граничными условиями, которым должно удовлетворять электромагнитное поле на границе раздела двух сред:

1. Уравнение максвелла; (на границе раздела нет свободных зарядов)

4. Уравнение максвелла(на границе раздела нет токов проводимости).

Некоторые следствия из уравнений Максвелла

Уравнения Максвелла – наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. Они играют в электродинамике такую же роль, как законы Ньютона в механике.

1. Согласно идеям Максвелла, переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнитным полем, т.е. электрические и магнитные поля неразрывно связаны друг с другом – они образуют единое электромагнитное поле.

2. Теория Максвелла не только смогла объяснить уже известные экспериментальные факты, но и предсказала новые явления: существование магнитного поля токов смещения позволило предсказать существование электромагнитных волн – переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью (скоростью света). Этот вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, согласно которой свет представляет собой также электромагнитные волны.

Теория Максвелла была экспериментально подтверждена: электромагнитные волны были получены на практике немецким физиком Герцем, который доказал, что законы их возбуждения и распространения полностью подчиняются уравнениям Максвелла.

3. К электромагнитному полю применим только принцип относительности Эйнштейна, согласно которому, механические, оптические и электромагнитные явления во всех инерциальных системах отсчета протекают одинаково, т.е. описываются одинаковыми уравнениями. Из принципа относительности следует, что раздельное рассмотрение электрического и магнитного полей имеет лишь относительный смысл. Так если электрическое поле создается системой неподвижных зарядов, то эти заряды, являясь неподвижными относительно одной системы отсчета, движутся относительно другой и, следовательно, будут порождать не только электрическое, но и магнитное поле. Аналогично, неподвижный проводник с постоянным током, возбуждая в каждой точке пространства постоянное магнитное поле, движется относительно других инерциальных систем, и создаваемое им переменное магнитное поле возбуждает вихревое электрическое поле. Таким образом, поле, которое относительно некоторой системы отсчета оказывается чисто электрическим или чисто магнитным, относительно других систем отсчета будет представлять собой совокупность электрического и магнитного полей.

Вывод: теория Максвелла, ее экспериментальное подтверждение, а также принцип относительности Эйнштейна приводят к единой теории электрических, магнитных и оптических явлений, основанных на представлении об электромагнитном поле

Уравнения Максвелла и их физический смысл

Система уравнений Максвелла включает в себя четыре основных уравнения

Эта система дополняется тремя материальными уравнениями, определяющими связь между физическими величинами, входящими в уравнения Максвелла:

Вспомним физический смысл этих математических фраз.

В первом уравнении (3.1) утверждается, что электростатическое поле может быть создано только электрическими зарядами.В этом уравнении Уравнение максвелла— вектор электрического смещения, ρ — объемная плотность электрического заряда.

Поток вектора электрического смещения через любую замкнутую поверхность равен заряду, заключенному внутри этой поверхности.

Как свидетельствует эксперимент, поток вектора магнитной индукции через замкнутую поверхность всегда равен нулю (3.2)

Сопоставление уравнений (3.2) и (3.1) позволяет сделать вывод о том, что магнитные заряды в природе отсутствуют.

Огромный интерес и важность представляют уравнения (3.3) и (3.4). Здесь рассматриваются циркуляции векторов напряженности электрического ( Уравнение максвелла) и магнитного ( Уравнение максвелла) полей по замкнутому контуру.

В уравнении (3.3) утверждается, что переменное магнитное поле ( Уравнение максвелла) является источником вихревого электрического поля ( Уравнение максвелла).Это не что иное, как математическая запись явления электромагнитной индукции Фарадея.

В уравнении (3.4) устанавливается связь магнитного поля и переменного электрического. Согласно этому уравнению магнитное поле может быть создано не только током проводимости ( Уравнение максвелла), но и переменным электрическим полем Уравнение максвелла.

В этих уравнениях:

Уравнение максвелла— вектор электрического смещения,

H — напряженность магнитного поля,

E — напряженность электрического поля,

j — плотность тока проводимости,

μ — магнитная проницаемость среды,

ε —диэлектрическая проницаемость среды.

Электромагнитные волны. Свойства электромагнитных волн

В прошлом семестре, завершая рассмотрение системы уравнений классической электродинамики Максвелла, мы установили, что совместное решение двух последних уравнений (о циркуляции векторов Уравнение максвеллаи Уравнение максвелла) приводит к дифференциальному волновому уравнению.

Так мы получили волновое уравнение «Y» волны:

Электрическая компонента y – волны распространяется в положительном направлении оси X с фазовой скоростью

Аналогичное уравнение описывает изменение в пространстве и во времени магнитного поля y – волны:

Анализируя полученные результаты, можно сформулировать ряд свойств, присущих электромагнитным волнам.

1. Плоская «y» — волна является линейно поляризованной поперечной волной. Векторы напряженности электрического ( Уравнение максвелла), магнитного ( Уравнение максвелла) поля и фазовой скорости волны ( Уравнение максвелла) взаимно перпендикулярны и образуют «правовинтовую» систему (рис.3.1).

Уравнение максвелла

Уравнение максвелла

2. В каждой точке пространства компонента волны Hz пропорциональна напряженности электрического поляEy :

Уравнение максвелла

Здесь знаку «+» соответствует волна, распространяющаяся в положительном направлении оси X. Знак «-» — в отрицательном.

3. Электромагнитная волна движется вдоль оси X с фазовой скоростью

Уравнение максвелла

При распространении электромагнитной волны в вакууме (ε = 1, μ = 1) фазовая скорость

Уравнение максвелла

Здесь электрическая постоянная ε0 = 8.85 · 10 -12 Уравнение максвелла

магнитная постоянная μ0 = 4π · 10 -7 Уравнение максвелла

Уравнение максвелла.

Уравнение максвелла.

Совпадение скорости электромагнитной волны в вакууме со скоростью света стало первым доказательством электромагнитной природы света.

В вакууме упрощается связь напряженности магнитного и электрического полей в волне.

Уравнение максвелла.

При распространении электромагнитной волны в диэлектрической среде (μ = 1) Уравнение максвеллаи Уравнение максвелла.

Уравнения Максвелла

См. также «Физический портал»

Уравнения Максвелла — система дифференциальных уравнений, описывающих электромагнитное поле и его связь сэлектрическими зарядами и токами в вакууме и сплошных средах. Вместе с выражением для силы Лоренца образуют полную систему уравнений классической электродинамики . Уравнения, сформулированные Джеймсом Клерком Максвеллом на основе накопленных к середине XIX века экспериментальных результатов, сыграли ключевую роль в развитии представлений теоретической физики и оказали сильное, зачастую решающее, влияние не только на все области физики, непосредственно связанные с электромагнетизмом . но и на многие возникшие впоследствии фундаментальные теории, предмет которых не сводился к электромагнетизму (одним из ярчайших примеров здесь может служить специальная теория относительности).

Содержание [убрать] 1. История 2. Запись уравнений Максвелла и системы единиц 3. Дифференциальная форма 4. Интегральная форма 5. Сила Лоренца 6. Размерные константы в уравнениях Максвелла 7. Уравнения Максвелла в среде 7.1 Связанные заряды и токи 7.2 Материальные уравнения 7.3 Уравнения в изотропных и однородных средах без дисперсии o 7.4 Граничные условия 8. Законы сохранения 8.1 Уравнение непрерывности o 8.2 Закон сохранения энергии 9. Потенциалы 9.1 Скалярный и векторный потенциалы 9.2 Векторы Герца 9.3 Потенциалы Дебая 9.4 Векторы Римана — Зильберштейна 10. Ковариантная формулировка o 10.1 Четырёхмерные векторы 10.2 Тензор электромагнитного поля o 10.3 Лагранжиан 10.4 Запись при помощи дифференциальных форм 10.5 Общековариантная запись в компонентах 11. Спектральное представление 12. Уравнения без свободных зарядов и токов 12.1 Волновое уравнение 12.2 Уравнение Гельмгольца 13. Некоторые точные решения 13.1 Поле движущегося точечного заряда 13.2 Плоские электромагнитные волны 14. Связь с другими теориями 15. Аксиоматический подход 16. Единственность решений уравнений Максвелла 17. Численное решение уравнений Максвелла 18. Источники 19. Примечания 20. См. также 21. Литература 21.1 Исторические публикации 21.2 История развития 21.3 Общие курсы физики 21.4 Курсы теоретической физики 21.5 Решения уравнений Максвелла 22. Ссылки

Уравнение максвелла

Уравнение максвелла

Уравнения, сформулированные Джеймсом Клерком Максвеллом, возникли на основе ряда важных экспериментальных открытий, которые были сделаны в начале XIX века. В 1820 году Ганс Христиан Эрстед обнаружил, что пропускаемый через проводгальванический ток заставляет отклоняться магнитную стрелку компаса. Это открытие привлекло широкое внимание учёных того времени. В том же 1820 году Био и Савар экспериментально нашли выражение для порождаемой током магнитной индукции (закон Био-Савара ), и Андре Мари Ампер обнаружил, чтовзаимодействие на расстоянии возникает также между двумя проводниками, по которым пропускается ток. Ампер ввёл термин «электродинамический9raquo; и выдвинул гипотезу, что природный магнетизм связан с существованием в магните круговых токов.

Влияние тока на магнит, обнаруженное Эрстедом, привело Майкла Фарадея к идее о том, что должно существовать обратное влияние магнита на токи. После длительных экспериментов, в 1831 году, Фарадей открыл, что перемещающийся возле проводника магнит порождает в проводнике электрический ток. Это явление было названо электромагнитной индукцией. Фарадей ввёл понятие «поля сил» — некоторой среды, находящейся между зарядамии токами. Его рассуждения носили качественный характер, однако они оказали огромное влияние на исследования Максвелла.

После открытий Фарадея стало ясно, что старые модели электромагнетизма (Ампер, Пуассон и др.) неполны. Вскоре появилась теория Вебера, основанная на дальнодействии. Однако к этому моменту вся физика, кроме теории тяготения, имела дело только с близкодейственными силами (оптика, термодинамика, механика сплошных сред и др.). Гаусс, Риман и ряд других учёных высказывали догадки, что свет имеет электромагнитную природу, так что теория электромагнитных явлений тоже должна быть близкодейственной. Этот принцип стал существенной особенностью теории Максвелла.

В своём знаменитом «Трактате об электричестве и магнетизме» (1873) Максвелл писал:

«Приступая к изучению труда Фарадея, я установил, что его метод понимания явлений был так же математическим, хотя и не представленным в форме обычных математических символов. Я также нашёл, что этот метод можно выразить в обычной математической форме и таким образом сравнить с методами профессиональных математиков».

Заменяя фарадеевский термин «поле сил» на понятие «напряжённость поля», Максвелл сделал его ключевым объектом своей теории:

Если мы примем эту среду в качестве гипотезы, я считаю, что она должна занимать выдающееся место в наших исследованиях, и что нам следовало бы попытаться сконструировать рациональное представление о всех деталях её действия, что и было моей постоянной целью в этом трактате.

Подобная электродинамическая среда явилась абсолютно новым понятием для ньютоновской физики. Последняя изучала взаимодействие между собой материальных тел. Максвелл же записал уравнения, которым должна подчиняться среда, определяющая взаимодействие зарядов и токов и существующая даже в их отсутствие.

Уравнение максвелла

Уравнение максвелла

Электрический ток создаёт магнитную индукцию (закон Ампера )

Анализируя известные эксперименты, Максвелл получил систему уравнений для электрического и магнитного полей. В 1855 году в своей самой первой статье «О фарадеевых силовых линиях» («On Faraday’s Lines of Force») он впервые записал в дифференциальной форме систему уравнений электродинамики, но не вводя ещё ток смещения. Такая система уравнений описывала все известные к тому времени экспериментальные данные, но не позволяла связать между собой заряды и токи и предсказатьэлектромагнитные волны. Впервые ток смещения был введён Максвеллом в работе «О физических силовых линиях» («On Physical Lines of Force»), состоящей из четырёх частей и опубликованной в 1861-1862 годах.

Обобщая закон Ампера, Максвелл вводит ток смещения, вероятно, чтобы связать токи и заряды уравнением непрерывности, которое уже было известно для других физических величин. Следовательно, в этой статье фактически была завершена формулировка полной системы уравнений электродинамики. В статье 1864 года «Динамическая теория электромагнитного поля» («A dynamical theory of the electromagnetic field») рассмотрена сформулированная ранее система уравнений из 20 скалярных уравнений для 20 скалярных неизвестных. В этой статье Максвелл впервые сформулировал понятие электромагнитного поля как физической реальности, имеющей собственную энергию и конечное время распространения, определяющее запаздывающий характер электромагнитного взаимодействия.

Уравнение максвелла

Уравнение максвелла

Переменный поток магнитного поля создаёт электрическое поле (закон Фарадея )

Оказалось, что не только ток, но и изменяющееся со временем электрическое поле (ток смещения) порождаетмагнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света.

Часть физиков выступила против теории Максвелла (особенно много возражений вызвала концепция тока смещения). Гельмгольц предложил свою теорию, компромиссную по отношению к моделям Вебера и Максвелла, и поручил своему ученику Генриху Герцу провести её экспериментальную проверку. Однако опыты Герца однозначно подтвердили правоту Максвелла.

Максвелл не использовал векторных обозначений и записывал свои уравнения в достаточно громоздком компонентном виде. В своём трактате он, кроме того, частично использовалкватернионную формулировку. Современная форма уравнений Максвелла появилась около 1884 года после работ Хевисайда, Герца и Гиббса. Они не только переписали систему Максвелла в векторном виде, но и симметризовали её, переформулировав в терминах поля, избавившись отэлектрического и магнитного потенциалов, игравших в теории Максвелла существенную роль, поскольку полагали, что эти функции являются лишь ненужными вспомогательными математическими абстракциями. Интересно, что современная физика поддерживает Максвелла, но не разделяет негативное отношение его ранних последователей к потенциалам.Электромагнитный потенциал играет важную роль в квантовой физике и проявляется как физически измеряемая величина в некоторых экспериментах, например, в эффекте Ааронова-Бома.

Система уравнений в формулировке Герца и Хевисайда некоторое время называлась уравнениями Герца-Хевисайда. Эйнштейн в классической статье «К электродинамике движущихся тел» назвал их уравнениями Максвелла-Герца. Иногда в литературе встречается также название уравнения Максвелла-Хевисайда.

Уравнения Максвелла сыграли важную роль при возникновении специальной теории относительности (СТО). Джозеф Лармор (1900 год) и независимо от него Хенрик Лоренц (1904 год) нашли преобразования координат, времени и электромагнитных полей, которые оставляют уравнения Максвелла инвариантными при переходе от одной инерциальной системы отсчёта к другой. Эти преобразования отличались от преобразований Галилея классической механики и, следуя Анри Пуанкаре, стали называться преобразованиями Лоренца. Они стали математическим фундаментом специальной теории относительности.

Распространение электромагнитных волн со скоростью света первоначально интерпретировалось как возмущения некоторой среды, так называемого эфира. Были предприняты многочисленные попытки (см. исторический обзор) обнаружить движение Земли относительно эфира, однако они неизменно давали отрицательный результат. Поэтому Анри Пуанкаре высказал гипотезу о принципиальной невозможности обнаружить подобное движение (принцип относительности). Ему же принадлежит постулат о независимости скорости света от скорости его источника и вывод (вместе с Лоренцем), исходя из сформулированного так принципа относительности, точного видапреобразований Лоренца (при этом были показаны и групповые свойства этих преобразований).

Эти две гипотезы (постулата) легли и в основу статьи Альберта Эйнштейна (1905 год). С их помощью он также вывел преобразования Лоренца и утвердил их общефизический смысл, особо подчеркнув возможность их применения для перехода из любой инерциальной системы отсчета в любую другую инерциальную. Эта работа фактически ознаменовала собой построение специальной теории относительности. В СТО преобразования Лоренца отражают общие свойства пространства и времени, а модель эфира оказывается ненужной. Электромагнитные поля являются самостоятельными объектами, существующими наравне с материальными частицами.

Классическая электродинамика, основанная на уравнениях Максвелла, лежит в основе многочисленных приложений электро- и радиотехники, СВЧ и оптики. До настоящего времени не было обнаружено ни одного эффекта, который потребовал бы видоизменения уравнений. Они оказываются применимы и в квантовой механике, когда рассматривается движение, например, заряженных частиц во внешних электромагнитных полях. Поэтому уравнения Максвелла являются основой микроскопического описания электромагнитных свойств вещества.

Уравнения Максвелла востребованы также в астрофизике и космологии, поскольку многие планетыи звезды обладают магнитным полем. Магнитное поле определяет, в частности, свойства таких объектов, как пульсары и квазары.

На современном уровне понимания все фундаментальные частицы являются квантовыми возбуждениями («квантами9raquo;) различных полей. Например, фотон — это квант электромагнитного поля, а электрон — квант спинорного поля. Поэтому полевой подход, предложенный Фарадеем и существенно развитый Максвеллом, является основой современной физики фундаментальных частиц, в том числе ее стандартной модели.

Исторически несколько раньше он сыграл важную роль в появлении квантовой механики в формулировке Шрёдингера и вообще открытии квантовых уравнений, описывающих движение частиц, в том числе и релятивистских (уравнение Клейна-Гордона, уравнение Дирака), хотя первоначально аналогия с уравнениями Максвелла здесь виделась скорее лишь в общей идее, тогда как впоследствии оказалось, что она может быть понята как более конкретная и детальная (как это описано выше).

Также полевой подход, в целом восходящий к Фарадею и Максвеллу, стал центральным в теории гравитации (включая ОТО).

Запись уравнений Максвелла и системы единиц

Запись большинства уравнений в физике не зависит от выбора системы единиц. Однако в электродинамике это не так. В зависимости от выбора системы единиц в уравнениях Максвелла возникают различные коэффициенты (константы). Международная система единиц СИ является стандартом в технике и преподавании, однако споры среди физиков о её достоинствах и недостатках по сравнению с конкурирующей симметричной гауссовой системой единиц (СГС) не утихают. Преимущество системы СГС в электродинамике состоит в том, что все поля в ней имеют одну размерность, а уравнения, по мнению многих учёных, записываются проще и естественней.

Поэтому СГС продолжает применяться в научных публикациях по электродинамике и в преподавании теоретической физики, например, в курсе теоретической физики Ландау и Лифшица . Однако для практических применений вводимые в СГС единицы измерений, многие из которых неименованы и неоднозначны, часто неудобны. Система СИ стандартизована и лучше самосогласованна, на этой системе построена вся современная метрология. Кроме того, система СИ обычно используется в курсах общей физики. В связи с этим все соотношения, если они по-разному записываются в системах СИ и СГС, далее приводятся в двух вариантах.

Дифференциальная форма

Уравнения Максвелла представляют собой в векторной записи систему из четырех уравнений, сводящуюся в компонентном представлении к восьми (два векторных уравнения содержат по три компоненты каждое плюс два скалярных) линейных дифференциальных уравнений в частных производных 1-го порядка для 12 компонент четырёх векторных функций ( Уравнение максвелла ):

Уравнение максвелла

Уравнение максвелла

Электрическая составляющая силы направлена по электрическому полю (если Уравнение максвелла ), а магнитная — перпендикулярна скорости заряда и магнитной индукции. Впервые выражение для силы, действующей на заряд в магнитном поле (электрическая компонента была известна), получил в 1889 году Хевисайд за три года до Хендрика Лоренца, который вывел выражение для этой силы в 1892 году.

В более сложных ситуациях в классической и квантовой физике в случае, когда под действием электромагнитных полей свободные заряды перемещаются и изменяют значения полей, необходимо решение самосогласованной системы из уравнений Максвелла и уравнений движения, включающих силы Лоренца. Получение точного аналитического решения такой полной системы сопряжено обычно с большими сложностями.

Размерные константы в уравнениях Максвелла

В гауссовой системе единиц СГС все поля имеют одинаковую размерность, и в уравнениях Максвелла фигурирует единственная фундаментальная константа Уравнение максвелла. имеющая размерностьскорости, которая сейчас называется скоростью света (именно равенство этой константы скорости распространения света дало Максвеллу основания для гипотезы об электромагнитной природе света).

В системе единиц СИ, чтобы связать электрическую индукцию и напряжённость электрического поля в вакууме. вводится электрическая постоянная ε0 ( Уравнение максвелла ). Магнитная постоянная Уравнение максвелла является таким же коэффициентом пропорциональности для магнитного поля в вакууме ( Уравнение максвелла ). Названия электрическая постоянная и магнитная постоянная сейчас стандартизованы. Ранее для этих величин также использовались, соответственно, названия диэлектрическая и магнитная проницаемости вакуума.

Скорость электромагнитного излучения в вакууме (скорость света) в СИ появляется при выводеволнового уравнения:

Уравнение максвелла

В системе единиц СИ, в качестве точных размерных констант определены скорость света в вакууме Уравнение максвелла и магнитная постоянная Уравнение максвелла. Через них выражается электрическая постоянная ε0 .

Принятые значения скорости света, электрической и магнитной постоянных приведены в таблице:

Иногда вводится величина, называемая «волновым сопротивлением», или «импедансом9raquo; вакуума:

Приближённое значение для Уравнение максвелла получается, если для скорости света принять значение Уравнение максвелла м/c. В системе СГС Уравнение максвелла. Эта величина имеет смысл отношения амплитуд напряжённостей электрического и магнитного полей плоской электромагнитной волны в вакууме.

Уравнения Максвелла в среде

Чтобы получить полную систему уравнений электродинамики, к системе уравнений Максвелла необходимо добавить материальные уравнения, связывающие величины Уравнение максвелла. Уравнение максвелла. Уравнение максвелла. Уравнение максвелла. Уравнение максвелла. в которых учтены индивидуальные свойства среды. Способ получения материальных уравнений дают молекулярные теории поляризации, намагниченности и электропроводности среды, использующие идеализированные модели среды. Применяя к ним уравнения классической иликвантовой механики, а также методы статистической физики, можно установить связь между векторами Уравнение максвелла. Уравнение максвелла. Уравнение максвелла с одной стороны и Уравнение максвелла. Уравнение максвелла с другой стороны.

Связанные заряды и токи

Уравнение максвелла

Уравнение максвелла

Слева : Совокупность микроскопических диполей в среде образуют один макроскопический дипольный момент и эквивалентны двум заряженным с противоположным знаком пластинам на границе. При этом внутри среды все заряды скомпенсированы;

Справа : Совокупность микроскопических циркулярных токов в среде эквивалентна макроскопическому току, циркулирующему вдоль границы. При этом внутри среды все токи скомпенсированы.

При приложении электрического поля кдиэлектрическому материалу каждая из его молекул превращается в микроскопическийдиполь. При этом положительные ядра атомов немного смещаются в направлении поля, а электронные оболочки в противоположном направлении. Кроме этого, молекулы некоторых веществ изначально имеют дипольный момент. Дипольные молекулы стремятся ориентироваться в направлении поля. Этот эффект называетсяполяризацией диэлектриков. Такое смещение связанных зарядов молекул в объёме эквивалентно появлению некоторого распределения зарядов на поверхности, хотя все молекулы, вовлечённые в процесс поляризации остаются нейтральными (см. рисунок).

Аналогичным образом происходит магнитная поляризация (намагнивание) в материалах, в которых составляющие их атомы и молекулы имеютмагнитные моменты, связанные со спином и орбитальным моментом ядер и электронов. Угловые моменты атомов можно представить в виде циркулярных токов. На границе материала совокупность таких микроскопических токов эквивалентна макроскопическим токам, циркулирующим вдоль поверхности, несмотря на то, что движение зарядов в отдельных магнитных диполях происходит лишь в микромасштабе (связанные токи).

Рассмотренные модели показывают, что хотя внешнее электромагнитное поле действует на отдельные атомы и молекулы, его поведение во многих случаях можно рассматривать упрощённым образом в макроскопическом масштабе, игнорируя детали микроскопической картины.

В среде сторонние электрические и магнитные поля вызывают поляризацию и намагничивание вещества, которые макроскопически описываются соответственно вектором поляризации Уравнение максвелла ивектором намагниченности Уравнение максвелла вещества, а вызваны появлением связанных зарядов Уравнение максвелла и токов Уравнение максвелла. В результате поле в среде оказывается суммой внешних полей и полей, вызванных связанными зарядами и токами.

Уравнение максвелла Уравнение максвелла

Уравнение максвелла Уравнение максвелла

где Уравнение максвелла — относительная диэлектрическая проницаемость, Уравнение максвелла — относительная магнитная проницаемость. Размерные величины ε0 ε (в единицах СИ — Ф/м) и μ0 μ (в единицах СИ — Гн/м), возникающие в системе СИ, называются абсолютная диэлектрическая проницаемость иабсолютная магнитная проницаемость соответственно.

В проводниках существует связь между плотностью тока и напряжённостью электрического поля, выражаемая законом Ома :

Уравнение максвелла

где Уравнение максвелла — удельная проводимость среды (в единицах СИ — Ом −1 •м −1 ).

В анизотропной среде ε, Уравнение максвелла и Уравнение максвелла являются тензорами Уравнение максвелла. Уравнение максвелла и Уравнение максвелла. В системе координат главных осей они могут быть описаны диагональными матрицами. В этом случае, связь между напряжённостями полей и индукциями имеют различные коэффициенты по каждой координате.

Например, в системе СИ:

Уравнение максвелла

Хотя для широкого класса веществ линейное приближение для слабых полей выполняется с хорошей точностью, в общем случае зависимость между Уравнение максвелла и Уравнение максвелла может быть нелинейной. В этом случае проницаемости среды не являются константами, а зависят от величины поля в данной точке. Кроме того, более сложная связь между Уравнение максвелла и Уравнение максвелла наблюдается в средах с пространственной или временной дисперсиями. В случае пространственной дисперсии токи и заряды в данной точке пространства зависят от величины поля не только в той же точке, но и в соседних точках. В случае временной дисперсии поляризация и намагниченность среды не определяются только величиной поля в данный момент времени, а зависят также от величины полей в предшествующие моменты времени. В самом общем случае нелинейных и неоднородных сред с дисперсией, материальные уравнения в системе СИ принимают интегральный вид:

Уравнение максвелла

Уравнение максвелла

Аналогичные уравнения получаются в гауссовой системе СГС (если формально положить ε0 = 1).

Уравнения в изотропных и однородных средах без дисперсии

В изотропных и однородных средах без дисперсии уравнения Максвелла принимают следующий вид :

Уравнение максвелла Уравнение максвелла Уравнение максвелла Уравнение максвелла

Уравнение максвелла Уравнение максвелла Уравнение максвелла Уравнение максвелла

В оптическом диапазоне частот вместо диэлектрической проницаемости ε используется показатель преломления Уравнение максвелла (зависящий от длины волны), показывающий отличие скорости распространения монохроматической световой волны в среде от скорости света в вакууме. При этом в оптическом диапазоне диэлектрическая проницаемость обычно заметно меньше чем на низких частотах, а магнитная проницаемость большинства оптических сред практически равна единице. Показатель преломления большинства прозрачных материалов составляет от 1 до 2, достигая 5 у некоторых полупроводников. В вакууме и диэлектрическая, и магнитная проницаемости равны единице: ε = μ = 1.

Поскольку уравнения Максвелла в линейной среде являются линейными относительно полей Уравнение максвелла и свободных зарядов и токов Уравнение максвелла. справедлив принцип суперпозиции:

Если распределения зарядов и токов Уравнение максвелла создают электромагнитное поле с компонентами Уравнение максвелла. а другие распределения Уравнение максвелла создают, соответственно, поле Уравнение максвелла. то суммарное поле, создаваемое источниками Уравнение максвелла. будет равно Уравнение максвелла .

При распространении электромагнитных полей в линейной среде в отсутствие зарядов и токовсумма любых частных решений уравнений будет также удовлетворять уравнениям Максвелла.

Граничные условия

Во многих случаях неоднородную среду можно представить в виде совокупности кусочно-непрерывных однородных областей, разделённых бесконечно тонкими границами. При этом можно решать уравнения Максвелла в каждой области, «сшивая9raquo; на границах получающиеся решения. В частности, при рассмотрении решения в конечном объёме необходимо учитывать условия на границах объёма с окружающим бесконечным пространством. Граничные условия получаются из уравнений Максвелла предельным переходом. Для этого проще всего воспользоваться уравнениями Максвелла в интегральной форме.

Выбирая во второй паре уравнений контур интегрирования в виде прямоугольной рамки бесконечно малой высоты, пересекающей границу раздела двух сред, можно получить следующую связь между компонентами поля в двух областях, примыкающих к границе:

Уравнение максвелла. Уравнение максвелла ,

Уравнение максвелла. Уравнение максвелла ,

где Уравнение максвелла — единичный вектор нормали к поверхности, направленный из среды 1 в среду 2 и имеющий размерность, обратную длине, Уравнение максвелла — плотность поверхностных свободных токов вдоль границы (то есть не включая связанных токов намагничивания, складывающихся на границе среды из микроскопических молекулярных итп токов). Первое граничное условие можно интерпретировать как непрерывность на границе областей тангенциальных компонент напряжённостей электрического поля (из второго следует, что тангенциальные компоненты напряжённости магнитного поля непрерывны только при отсутствии поверхностных токов на границе).

Аналогичным образом, выбирая область интегрирования в первой паре интегральных уравнений в виде цилиндра бесконечно малой высоты, пересекающего границу раздела так, что его образующие перпендикулярны границе раздела, можно получить:

Уравнение максвелла. Уравнение максвелла ,

Уравнение максвелла. Уравнение максвелла ,

где Уравнение максвелла — поверхностная плотность свободных зарядов (то есть не включающая в себя связанных зарядов. возникающих на границе среды вследствие диэлектрической поляризации самой среды).

Эти граничные условия показывают непрерывность нормальной компоненты вектора магнитной индукции (нормальная компонента электрической индукции непрерывна только при отсутствии на границе поверхностных зарядов).

Из уравнения непрерывности можно получить граничное условие для токов:

Уравнение максвелла ,

Важным частным случаем является граница раздела диэлектрика и идеального проводника. Поскольку идеальный проводник имеет бесконечную проводимость, электрическое поле внутри него равно нулю (иначе оно порождало бы бесконечную плотность тока). Тогда в общем случае переменных полей из уравнений Максвелла следует, что и магнитное поле в проводнике равно нулю. В результате тангенциальная компонента электрического и нормальная магнитного поля на границе с идеальным проводником равны нулю:

Уравнение максвелла. Уравнение максвелла. Уравнение максвелла. Уравнение максвелла ,

Уравнение максвелла. Уравнение максвелла. Уравнение максвелла. Уравнение максвелла ,

Уравнения Максвелла содержат в себе законы сохранения заряда и энергии электромагнитного поля.

Источники полей ( Уравнение максвелла ) не могут быть заданы произвольным образом. Применяя операцию дивергенции к четвёртому уравнению (закон Ампера-Максвелла) и используя первое уравнение (закон Гаусса ), можно получить уравнение непрерывности для зарядов и токов:

Уравнение максвелла

Вывод уравнения непрерывности

Это уравнение при помощи интегральной теоремы Остроградского-Гаусса можно записать в следующем виде:

Уравнение максвелла

В левой части уравнения находится полный ток, протекающий через замкнутую поверхность Уравнение максвелла. В правой части — изменение со временем заряда, находящегося внутри объёма Уравнение максвелла. Таким образом, изменение заряда внутри объёма возможно только при его притоке или оттоке через поверхность Уравнение максвелла. ограничивающую объём.

Уравнение непрерывности, эквивалентное закону сохранения заряда, далеко выходит за пределы классической электродинамики, оставаясь справедливым и в квантовой теории. Поэтому это уравнение само по себе может быть положено в основу электромагнитной теории. Тогда, например, ток смещения (производная по времени электрического поля) должен обязательно присутствовать в законе Ампера.

Из уравнений Максвелла для роторов и уравнения непрерывности с точностью до произвольных функций, не зависящих от времени, следуют законы Гаусса для электрического и магнитного полей.

Закон сохранения энергии

Если умножить третье уравнение Максвелла в дифференциальной форме (закон Фарадея)скалярно на Уравнение максвелла. а четвёртое (закон Ампера — Максвелла) на Уравнение максвелла и сложить результаты, можно получить теорему Пойнтинга:

Уравнение максвелла

Уравнение максвелла Уравнение максвелла Уравнение максвелла

Уравнение максвелла Уравнение максвелла Уравнение максвелла

Вектор Уравнение максвелла называется вектором Пойнтинга (вектором плотности потока электромагнитной энергии) и определяет количество электромагнитной энергии, переносимой через единицу площади в единицу времени. Интеграл вектора Пойнтинга по сечению распространяющейся волны определяет её мощность. Важно отметить, что, как впервые указал Хевисайд, физический смысл потока энергии имеет только безвихревая часть вектора Пойнтинга. Вихревая часть, дивергенция которой равна нулю, не связана с переносом энергии. Заметим, что Хевисайд получил выражение для закона сохранения независимо от Пойнтинга. В русскоязычной литературе вектор Пойнтинга часто называется также «вектором Умова-Пойнтинга ».

Величины Уравнение максвелла и Уравнение максвелла определяют объёмные плотности энергии, соответственно, электрического и магнитного полей. При отсутствии токов и связанных с ними потерь теорема Пойнтинга являетсяуравнением непрерывности для энергии электромагнитного поля. Проинтегрировав его в этом случае по некоторому замкнутому объёму и воспользовавшись теоремой Остроградского-Гаусса, можно получить закон сохранения энергии для электромагнитного поля:

Уравнение максвелла

Это уравнение показывает, что при отсутствии внутренних потерь изменение энергии электромагнитного поля в объёме происходит только за счёт мощности электромагнитного излучения, переносимого через границу этого объёма.

Вектор Пойнтинга связан с импульсом электромагнитного поля:

Где интегрирование производится по всему пространству. Электромагнитная волна, поглощаясь или отражаясь от некоторой поверхности, передаёт ей часть своего импульса, что проявляется в форме светового давления. Экспериментально этот эффект впервые наблюдался П. Н. Лебедевымв 1899 году.

[править]Скалярный и векторный потенциалы

Закон Фарадея и закон Гаусса для магнитной индукции выполняются тождественно, если электрическое и магнитное поля выразить через скалярный Уравнение максвелла и векторный Уравнение максвелла потенциалы:

Уравнение максвелла Уравнение максвелла

Уравнение максвелла Уравнение максвелла

Подобные преобразования играют важную роль в квантовой электродинамике и лежат в основе локальной калибровочной симметрии электромагнитного взаимодействия. Локальная калибровочная симметрия вводит зависимость от координат и времени в фазу глобальной калибровочной симметрии, которая, в силу теоремы Нётер, приводит к закону сохранения заряда.

Неоднозначность определения потенциалов оказывается удобной для наложения на них дополнительных условий, называемых калибровкой. Благодаря этому, уравнения электродинамики принимают более простой вид. Рассмотрим, например, уравнения Максвелла в однородных и изотропных средах с диэлектрической (ε) и магнитной ( Уравнение максвелла ) проницаемостями. Для данных Уравнение максвелла и Уравнение максвелла всегда можно подобрать такую функцию f. чтобы выполнялось калибровочное условие Лоренца :

Уравнение максвелла

Уравнение максвелла

В этом случае оставшиеся уравнения Максвелла в однородных и изотропных средах могут быть записаны в следующем виде:

Уравнения Максвелла

Значение уравнений Максвелла

Уравнения Дж. Максвелла создают основу для предложенной им теории электромагнитных явлений, которая объяснила все известные в то время эмпирические факты, некоторые эффекты предсказала. Главным выводом теории Максвелла стало положение о существовании электромагнитных волн, которые распространяются со скоростью света.

Уравнения, предложенные Максвеллом, в электромагнетизме играют роль подобную роли законов Ньютона в классической механике. Они явились обобщением экспериментальных законов и продолжением идей ученых (Кулона, Ампера, Фарадея и др.) изучавших электромагнетизм до Максвелла.

Сам Максвелл предложил двадцать уравнений в дифференциальной форме с двадцатью неизвестными величинами. В современном виде мы имеем систему уравнений Максвелла благодаря немецкому физику Г. Герцу и англичанину О. Хэвисайду. С помощью этих уравнений можно описать все электромагнитные явления.

Система уравнений Максвелла

Систему уравнений Максвелла составляют:

Выражения (1)-(4) называют полевыми уравнениями. они применимы для описания всех макроскопических электромагнитных явлений. Иногда уравнения системы Максвелла группируют в пары, первую пару составляют из второго и третьего уравнения, вторую пару — из первого и четвертого уравнений. При этом говорят, что в первую пару уравнений входят только основные характеристики поля ($\overrightarrow\ и\ \overrightarrow$), а во вторую пару — вспомогательные ($\overrightarrow\ и\ \overrightarrow$).

Каждое из векторных уравнений (1) и (2) эквивалентно трем скалярным уравнениям. Эти уравнения связывают компоненты векторов, которые находятся в левой и правой частях выражений. Так, в скалярном виде уравнение (1) представляется как:

В скалярном виде уравнение (2) запишем как:

Третье уравнение из системы Максвелла в скалярном виде:

Четвертое уравнение в скалярной форме примет следующий вид:

Для того чтобы рассмотреть конкретную ситуацию, систему уравнений (1)-(4) дополняют следующими материальными уравнениями, которые учитывают электромагнитные свойства среды:

\[\overrightarrow=\varepsilon <\varepsilon >_0\overrightarrow,\ \overrightarrow=\mu <\mu >_0\overrightarrow,\ \overrightarrow=\sigma \overrightarrow\left(5\right).\]

Необходимо отметить, что существует целый ряд явлений, в которых материальные уравнения существенно отличны от уравнений (5), например, если речь идет о нелинейных явлениях. В таких случаях получение материальных уравнений составляет отдельную научную задачу.

Физический смысл уравнений Максвелла

Уравнение (1) системы указывает на то, что двумя возможными источниками магнитного поля являются токи проводимости ($\overrightarrow$) и токи смещения ($\frac<\partial \overrightarrow><\partial t>$).

Уравнение (2) является законом электромагнитной индукции и отображает тот факт, что переменное магнитное поле — один из источников возникновения электрического поля.

Следующим источником электрического поля служат электрические заряды, что и отображает уравнение (4), которое является, по сути, законом Кулона.

Уравнение (3) означает, что линии магнитной индукции не имеют источников (они либо замкнуты, либо уходят в бесконечность), что приводит к выводу об отсутствии магнитных зарядов, которые создают магнитное поле.

Материальные уравнения (5) — это соотношения между векторами поля и токами. Диэлектрические свойства среды заключены в диэлектрической проницаемости ($\varepsilon $). Магнитные свойства, которые описывает намагниченность, учтены в магнитной проницаемости ($\mu $). Проводящие свойства среды сосредоточены в удельной проводимости ($\sigma $).

Уравнения поля линейны и учитывают принцип суперпозиции.

Границы применимости уравнений Максвелла

Система уравнений Максвелла ограничена следующими условиями:

Материальные тела должны быть неподвижны в поле.

Постоянные $\varepsilon ,\ \mu ,\sigma $ могут зависеть от координат, но не должны зависеть от времени и векторов поля.

В поле не должно находиться постоянных магнитов и ферромагнитных тел.

Если существует необходимость учета движения среды, то уравнения системы Максвелла оставляют неизменными, а движение учитывается в материальных уравнениях, которые становятся зависимыми от скорости среды и существенно усложняются. Кроме прочего материальные уравнения перестают быть соотношениями между парами величин, как в (5). Например, плотность тока проводимости становится зависимой от индукции магнитного поля, а не только от напряженности электрического поля.

Магнитное поле постоянных магнитов, например, можно описать, используя систему Максвелла, если известна намагниченность. Но, если заданы токи, то в присутствии ферромагнетиков описать поле при помощи данных уравнений не получится.

Задание: Докажите, что из уравнений Максвелла следует закон сохранения заряда.

В качестве основания для решения задачи используем из системы Максвелла уравнение:

Проведем операцию дивергирования в обеих частях выражения (1.1):

Для выражения (1.2) в соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Рассмотрим второе слагаемое в правой части. Мы можем поменять порядок дифференцирования, так как время и пространственные координаты независимы, то есть записать:

В соответствии с системой Максвелла мы знаем, что источниками электрических полей служат заряды или:

Что позволяет нам записать уравнение (1.4) в виде:

Что дает нам закон сохранения заряда, который записан в виде:

Данное уравнение называют уравнением непрерывности тока, оно содержит в себе закон сохранения заряда, что совершенно очевидно, если выражение (1.8), записать в интегральной форме:

тогда если области замкнуты и изолированы получаем:

Что требовалось доказать.

Задание: Покажите, что уравнения $rot\overrightarrow=-\frac<\partial \overrightarrow><\partial t>$ и $div\overrightarrow=0$. входящие в систему Максвелла не противоречат друг другу.

За основу решения примем уравнение:

Возьмём дивергенцию от обеих частей уравнения:

В соответствии с теоремой равенстве нулю дивергенции ротора имеем:

Соответственно, получаем, что

Выражение $div\overrightarrow=const$ не противоречит тому, что $div\overrightarrow=0$.

Мы получили, что уравнения $rot\overrightarrow=-\frac<\partial \overrightarrow><\partial t>$ и $div\overrightarrow=0$ совместны, что требовалось показать.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *