Траектория движения

Траектория движения

Используя понятие радиус-вектора, движение можно описать функциональной зависимостью . где t — время. Поскольку положение относительно, то и движение относительно. Относительны и все понятия, связанные с ним. Первым из таких понятий мы рассмотрим траекторию.

Траекторией называется совокупность положений, пройденных телом в процессе движения.

Тело не может в один и тот же момент времени находиться в разных положениях. Поэтому траектория представляет собой линию, и при этом линию непрерывную. В зависимости от формы траектории различают прямолинейное и криволинейное движение. Если криволинейная траектория лежит в одной плоскости, то движение называется плоским.

Если траектория представляет собой пространственную кривую, то в каждой точке траектории можно ввести понятие соприкасающейся плоскости .

Соприкасающейся плоскостью в какой-либо точке траектории М называется предельное положение плоскости, проходящей через три точки N, M, P этой траектории, когда точки N и P неограниченно приближаются (стремятся) к точке М.

Через три точки, не лежащие на одной прямой можно прости окружность и при том единственную. Поэтому для любой точки криволинейной траектории можно ввести понятие соприкасающейся окружности.

Соприкасающейся окружностью в какой-либо точке траектории М называется предельная окружность, проходящая через три точки N, M, P этой траектории, когда точки N и P неограниченно приближаются (стремятся) к точке М.

Центром и радиусом кривизны траектории в точке М называется центр и радиус кривизны окружности, соприкасающейся с траекторией в точке М. Очевидно, что в случае пространственной траектории соприкасающаяся окружность лежит в соприкасающейся плоскости. Прямолинейную траекторию можно считать траекторией с бесконечным радиусом кривизны.

Орт — это вектор, не обладающий физической размерностью (безразмерный), модуль которого равен единице. Любой вектор можно представить как произведение модуля на орт. Например, радиус-вектор:

Значит, орт любого вектора равен частному от деления вектора на его орт:

Нормалью траектории в точке М называется орт, направленный из точки М в центр кривизны траектории в точке М.

Ортом касательной в точке М называется орт, касательный к соприкасающейся окружности в точке М и направленный по движению.

Перемещением называется вектор изменения положения или вектор разности между последующим положением и предыдущим:

В случае, если ни один отрезок траектории не проходился материальной точкой дважды, то путь или путевая координата S(t) — это длина траектории от точки начала движения к данному моменту времени.

Отметим две точки на траектории: M с радиусом-вектором и N с радиусом-вектором .

Тогда для перемещения и приращения пути DS всегда справедливо:

(равенство выполняется в случае прямолинейной траектории). При этом

В случае криволинейной траектории элементарным перемещением и приращением пути dS называются такие, для которых с заданной наперёд точностью выполняется

Итак, мы имеем связь между элементарными перемещением и приращением пути:

Траектория движения тела

Траектория – это линия, вдоль которой движется тело.

Траектория представляет собой своеобразный «след», который оставляет за собой движущееся тело в данной системе отсчета. Она позволяет наблюдателю этой системы отсчета увидеть все точки, которые последовательно проходило тело во время движения. Например, железнодорожный путь указывает траекторию движения поезда, автомобильное шоссе – траекторию движения автомашин. След, оставшийся в небе за летящим самолетом, «рисует» траекторию самолета, лыжня – траекторию лыжника, а любой текст, написанный на листе бумаги – траекторию кончика карандаша или ручки.

Траектория тела в разных системах отсчета

Следует отметить, что траектории движения одного и того же тела в разных системах отсчета могут быть различными. Например, в системе отсчета, связанной с Землей, траектория движения искусственного спутника вокруг Земли – окружность, а в системе отсчета, связанной с Солнцем, — винтовая линия или спираль (рис.1).

Траектория движения

В зависимости от формы траектории механические движения делятся на прямолинейные (траектория – прямая линия) (рис.2, а) и криволинейные (траектория – кривая линия) (рис.2, б).

Траектория движения

Определение уравнения траектории движения тела является одной из задач механики.

Примеры решения задач по теме «Траектория»

Какова траектория движения точки обода велосипедного колеса при равномерном прямолинейном движении велосипедиста в системах отсчета, жестко связанных: а) с вращающимся колесом; б) с рамой велосипеда; в) с Землей?

а) в системе отсчета, жестко связанной с вращающимся колесом траектория точки обода велосипедного колеса – точка, так как в этой системе точка обода находится в состоянии покоя;

б) в системе отсчета, связанной с рамой, траектория точки обода вращающегося колеса – окружность, так как точка обода совершает вращательное движение относительно оси, закрепленной на раме;

в) в системе отсчета, связанной с землей, траектория точки обода вращающегося колеса – циклоида, потому что точка одновременно совершает поступательное и вращательное движения; длина дуги циклоиды равна длине окружности обода колеса.

Траектория движения

Дидактический материал предназначен студентам всех специальностей заочного факультета ГУЦМиЗ, изучающих курс механики по программе для инженерно-технических специальностей.

Дидактический материал содержит краткое изложение теории по изучаемой теме, адаптированной к уровню обученности студентов-заочников, примеры решения типовых задач, вопросы и задания, аналогичные предлагаемым студентам на экзаменах, справочный материал.

Цель такого материала – помочь студенту-заочнику самостоятельно в сжатые сроки усвоить кинематическое описание поступательного и вращательного движений, используя метод аналогии; научиться решать численные и качественные задачи, разбираться в вопросах, связанных с размерностью физических величин.

Особое внимание уделяется решению качественных задач, как одному из приемов более глубокого и сознательного усвоения основ физики, необходимых при изучении специальных дисциплин. Они помогают понять смысл происходящих явлений природы, уяснить сущность физических законов и уточнить область их применения.

Дидактический материал может быть полезен студентам дневной формы обучения.

Часть физики, изучающую механическое движение, называют механикой. Под механическим движением понимают изменение с течением времени взаимного расположения тел или их частей.

Кинематика – первый раздел механики, она изучает законы движения тел, не интересуясь причинами, вызывающими это движение.

1. Материальная точка. Система отсчета. Траектория.

Путь. Вектор перемещения

Простейшая модель кинематики — материальная точка . Это тело, размерами которого в данной задаче можно пренебречь. Любое тело можно представить как совокупность материальных точек.

Чтобы математически описать движение тела, необходимо определиться с системой отсчета. Система отсчета (СО) состоит из тела отсчета и связанных с ним системы координат и часов. Если в условии задачи нет специальных указаний, считается, что система координат связана с поверхностью Земли. В качестве системы координат чаще всего используется декартова система.

Пусть требуется описать движение материальной точки в декартовой системе координат ХУZ (рис.1). В некоторый момент времени t1 точка находится в положении А. Положение точки в пространстве можно характеризовать радиусом — вектором r1. проведенным из начала координат в положение А. и координатами x1. y1. z1 . Здесь и далее векторные величины обозначены жирным курсивом. К моменту времени t2 = t1 + Δ t материальная точка переместится в положение В с радиус вектором r2 и координатами x2. y2. z2.

Траектория движения

К равнопеременному движению с ускорением свободного падения g = 9,81 м/с 2 относится свободное движение тел в вертикальной плоскости: вниз тела падают с g ›0, при движении вверх ускорение g ‹ 0. Скорость движения и пройденный путь при этом изменяется согласно (11):

Рассмотрим движение тела, брошенного под углом к горизонту (мяч, камень, пушечный снаряд,… ). Это сложное движение состоит из двух простых: по горизонтали вдоль оси ОХ и вертикали вдоль оси ОУ (рис.6). По горизонтальной оси в отсутствие сопротивления среды движение равномерное; по вертикальной оси — равнопеременное: равнозамедленное до максимальной точки подъема и равноускоренное после нее. Траектория движения имеет вид параболы. Пусть 0 — начальная скорость тела, брошенного под углом α к горизонту из точки А (начало координат). Ее составляющие по выбранным осям:

Траектория движения

Согласно формуле (13) имеем для нашего примера в любой точке траектории до точки С

В наивысшей точке траектории, точке С. вертикальная составляющая скорости у = 0. Отсюда можно найти время движения до точки С:

Зная это время, можно определить максимальную высоту подъема тела по (14):

Поскольку траектория движения симметрична, то полное время движения до конечной точки В равно

Дальность полета АВ с учетом (15) и (19) определится так:

Полное ускорение движущегося тела в любой точке траектории равно ускорению свободного падения g ; его можно разложить на нормальное и тангенциальное, как было показано на рис.3.

Траектория движения это:

Смотреть что такое «Траектория движения» в других словарях:

траектория движения алмазов (бурового долота) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN diamond path … Справочник технического переводчика

Траектория материальной точки — Траектории трёх объектов (угол запуска  70°, Distance  расстояние, Height  высота), разное лобовое сопротивление Запрос «Траектория» перенаправляется сюда; см. также другие значения. Траектория материальной точки   линия в… … Википедия

ТРАЕКТОРИЯ — (от лат. trajicere перебрасывать, пересекать), в геометрии: прямая или кривая линия, которую описывает движущееся или падающее тело, напр. ядро, по выходе из пушки. 2) кривая, пересекающая систему однородных кривых под одним и тем же углом.… … Словарь иностранных слов русского языка

Траектория (физич. математич.) — Траектория (от позднелат. trajectorius относящийся к перемещению), непрерывная линия, которую описывает точка при своём движении. Если Т. прямая линия, движение точки называется прямолинейным, в противном случае криволинейным. Вид Т. свободной… … Большая советская энциклопедия

ТРАЕКТОРИЯ — (Trajectory) путь движения точки или тела, напр. траектория полета снаряда. Самойлов К. И. Морской словарь. М. Л. Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 Траектория непрерывная линия, описываемая в пространстве движуще … Морской словарь

траектория метеорного тела — траектория Линия движения метеорного тела в геоцентрической системе координат. [ГОСТ 25645.112 84] Тематики вещество метеорное Обобщающие термины динамические характеристики метеорного тела Синонимы траектория EN trajectory DE atmosphärische… … Справочник технического переводчика

ТРАЕКТОРИЯ — непрерывная линия, описываемая материальной точкой (см. (3)) при её движении в пространстве млн. относительно выбранной системы отсчёта (см.) (см. ); в зависимости от формы различают Т. прямолинейные и криволинейные (см. ). Т. точек твёрдого тела … Большая политехническая энциклопедия

ТРАЕКТОРИЯ — (от позднелат. trajectorius относящийся к перемещению), непрерывная линия, к рую описывает точка при своём движении. Если Т. прямая линия, движение точки наз. прямолинейным, в противном случае криволинейным. Вид Т. свободной материальной точки… … Физическая энциклопедия

ТРАЕКТОРИЯ — во внешней баллистике линия движения центра массы снаряда (ракеты, пули) от точки вылета из канала ствола огнестрельного оружия (направляющей или ствола пусковой установки) до точки встречи с целью (точки разрыва) … Большой Энциклопедический словарь

Траектория (во внешней баллистике) — Траектория во внешней баллистике, линия движения в пространстве центра массы снаряда (ракеты) с момента вылета из канала ствола огнестрельного оружия (направляющей или ствола пусковой установки) и потери с ним механической связи. Форма Т.… … Большая советская энциклопедия

Траектория — Википедия

Рис. 1. Траектории трёх объектов (угол запуска — 70°, Distance — расстояние, Height — высота), разное лобовое сопротивление

Запрос «Траектория» перенаправляется сюда; см. также другие значения .

Траекто́рия материа́льной то́чки — линия в пространстве. по которой движется тело, представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве относительно выбранной системы отсчёта. Существенно, что понятие о траектории имеет физический смысл даже при отсутствии какого-либо по ней движения.

Кроме того, и при наличии движущегося по ней объекта, траектория, изображаемая в наперёд заданной системе пространственных координат, сама по себе не может ничего определённого сказать в отношении причин его движения, пока не проведён анализ конфигурации поля действующих на него сил в той же координатной системе.

Не менее существенно, что форма траектории неотрывно связана и зависит от конкретной системы отсчёта, в которой описывается движение.

Возможно наблюдение траектории при неподвижности объекта, но при движении системы отсчёта. Так, звёздное небо может послужить хорошей моделью инерциальной и неподвижной системы отсчёта. Однако при длительной экспозиции эти звёзды представляются движущимися по круговым траекториям (Рис. 3)

Возможен и случай, когда тело явно движется, но траектория в проекции на плоскость наблюдения является одной неподвижной точкой. Это, например, случай летящей прямо в глаз наблюдателя пули или уходящего от него поезда.

Содержание

Траектория свободной материальной точки Править

В соответствии с Первым законом Ньютона, иногда называемым законом инерции. должна существовать такая система, в которой свободное тело сохраняет (как вектор) свою скорость. Такая система отсчёта называется инерциальной. Траекторией такого движения является прямая линия. а само движение называется равномерным и прямолинейным.

Траектория движения

Рис. 2. Прямолинейное равномерно ускоряющееся движение в одной инерциальной системе в общем случае будет параболическим в другой равномерно двигающейся инерциальной системе отсчёта.

Принято описывать траекторию материальной точки в наперёд заданной системе координат при помощи радиус-вектора. направление, длина и начальная точка которого зависят от времени. При этом кривая, описываемая концом радиус-вектора в пространстве может быть представлена в виде сопряжённых дуг различной кривизны. находящихся в общем случае в пересекающихся плоскостях. При этом кривизна каждой дуги определяется её радиусом кривизны. направленном к дуге из мгновенного центра поворота. находящегося в той же плоскости, что и сама дуга. При том прямая линия рассматривается как предельный случай кривой. радиус кривизны которой может считаться равным бесконечности. И потому траектория в общем случае может быть представлена как совокупность сопряжённых дуг.

Существенно, что форма траектории зависит от системы отсчёта. избранной для описания движения материальной точки. Так, прямолинейное равномерно ускоряющееся движение в одной инерциальной системе в общем случае будет параболическим в другой равномерно двигающейся инерциальной системе отсчёта.

Участок траектории материальной точки в физике обычно называют путём и обычно обозначают символом S — от итал. s postamento (перемещение ).

Связь со скоростью и нормальным ускорением Править

Траектория движения

Рис. 3. Суточное движение светил в системе отсчёта, связанной с фотоаппаратом в проекции на плоскость рисунка

Скорость материальной точки всегда направлена по касательной к дуге, используемой для описания траектории точки. При этом существует связь между величиной скорости v <\displaystyle v> . нормальным ускорением a n <\displaystyle a_> и радиусом кривизны траектории R <\displaystyle R> в данной точке:

Однако, не всякое движение с известной скоростью по кривой известного радиуса и найденное по приведённой выше формуле нормальное (центростремительное) ускорение связано с проявлением силы, направленной по нормали к траектории (центростремительной силы ). Так, найденное по данным фотографии суточного движения светил ускорение любой из звёзд отнюдь не говорит о существовании вызывающей это ускорение силы, притягивающей её к Полярной звезде, как центру вращения.

Связь с уравнениями динамики Править

Представление траектории как следа, оставляемого движением материальной точки, связывает чисто кинематическое понятие о траектории, как геометрической проблеме, с динамикой движения материальной точки, то есть проблемой определения причин её движения. Фактически, решение уравнений Ньютона (при наличии полного набора исходных данных) даёт траекторию материальной точки.

В соответствии с принципом относительности Галилея. существует бесконечное множество равноправных инерциальных систем (ИСО), движение которых одна относительно другой не может быть установлено никаким образом путём наблюдения любых процессов и явлений, происходящих только в этих системах. Прямая траектория равномерного движения объекта в одной системе будет выглядеть также прямой в любой другой инерциальной системе, хотя величина и направление скорости будут зависеть от выбора системы, то есть от величины и направления их относительной скорости.

Вместе с тем Принцип Галилея не утверждает. что одно и то же явление, наблюдаемое из двух разных ИСО, будут выглядеть одинаково. Поэтому Рис. 2 предупреждает о двух типичных ошибках, связанных с забвением того, что:

1. Истинно, что любой вектор (в том числе вектор силы) может быть разложен по крайней мере на две составляющие. Но это разложение совершенно произвольно и не значит, что такие компоненты существуют в действительности. Для подтверждения их реальности должна привлекаться дополнительная информация. в любом случае не взятая из анализа формы траектории. Например, по рисунку 2 невозможно определить природу силы F, так же как невозможно утверждать, что она сама является или не является суммой сил разной природы. Можно лишь утверждать, что на изображённом участке она постоянна, и что для формирования наблюдаемой в данной СО криволинейности траектории служит вполне определённая в данной СО центростремительная часть этой силы. Зная лишь траекторию материальной точки в какой-либо инерциальной системе отсчёта и её скорость в каждый момент времени, нельзя определить природу сил, действовавших на неё.

2. Даже в случае наблюдения из ИСО, форма траектории ускоренно движущегося тела будет определяться не только действующими на него силами, но и выбором этой ИСО, никак на эти силы не влияющим. Центростремительная сила. показанная на рисунке 2, получена формально, и её величина непосредственно зависит от выбора ИСО.

Движение под действием внешних сил в инерциальной системе отсчёта Править

Если в заведомо инерциальной системе скорость v → <\displaystyle <\vec >> движения объекта (для неподвижного в данной системе наблюдателя ) с массой m <\displaystyle m> меняется по направлению, даже оставаясь прежней по величине, то есть тело производит поворот и движется по дуге с радиусом кривизны R <\displaystyle R> . то значит, это тело испытывает нормальное ускорение a n <\displaystyle a_> . Причиной, вызывающей это ускорение, является центростремительная сила, прямо пропорциональная этому ускорению. В этом состоит суть Второго закона Ньютона:

Где F → <\displaystyle <\vec >> есть векторная сумма сил, действующих на тело, a → n <\displaystyle <\vec >_> его ускорение, а m <\displaystyle m> — инерционная масса.

В общем случае тело не бывает свободно в своём движении, и на его положение, а в некоторых случаях и на скорость. налагаются ограничения — связи. Если связи накладывают ограничения только на координаты тела, то такие связи называются геометрическими. Если же они распространяются и на скорости, то они называются кинематическими. Если уравнение связи может быть проинтегрировано во времени, то такая связь называется голономной .

Действие связей на систему движущихся тел описывается силами, называемыми реакциями связей. В таком случае сила, входящая в левую часть уравнения (1), есть векторная сумма активных (внешних) сил и реакции связей.

Существенно, что в случае голономных связей становится возможным описать движение механических систем в обобщённых координатах. входящих в уравнения Лагранжа. Число этих уравнений зависит лишь от числа степеней свободы системы и не зависит от количества входящих в систему тел, положение которых необходимо определять для полного описания движения.

Если же связи, действующие в системе идеальны. то есть в них не происходит переход энергии движения в другие виды энергии, то при решении уравнений Лагранжа автоматически исключаются все неизвестные реакции связей.

Наконец, если действующие силы принадлежат к классу потенциальных. то при соответствующем обобщении понятий становится возможным использования уравнений Лагранжа не только в механике, но и других областях физики.

Действующие на материальную точку силы в этом понимании однозначно определяют форму траектории её движения (при известных начальных условиях). Обратное утверждение в общем случае не справедливо, поскольку одна и та же траектория может иметь место при различных комбинациях активных сил и реакций связи.

Движение под действием внешних сил в неинерциальной системе отсчёта Править

Если система отсчёта неинерциальна (то есть движется с неким ускорением относительно инерциальной системы отсчёта), то в ней также возможно использование выражения (1), однако в левой части необходимо учесть так называемые силы инерции (в том числе, центробежную силу и силу Кориолиса. связанные с вращением неинерциальной системы отсчёта) .

Иллюстрация Править

Траектории одного и того же движения в неподвижной и вращающейся системах отсчёта. Вверху в инерциальной системе видно, что тело двигается по прямой. Внизу в неинерциальной видно, что тело повернуло в сторону от наблюдателя по кривой.

Как пример, рассмотрим работника театра, передвигающегося в колосниковом пространстве над сценой по отношению к зданию театра равномерно и прямолинейно и несущего над вращающейся сценой дырявое ведро с краской. Он будет оставлять на ней след от падающей краски в форме раскручивающейся спирали (если движется от центра вращения сцены) и закручивающейся — в противоположном случае. В это время его коллега, отвечающий за чистоту вращающейся сцены и на ней находящийся, будет поэтому вынужден нести под первым недырявое ведро, постоянно находясь под первым. И его движение по отношению к зданию также будет равномерным и прямолинейным. хотя по отношению к сцене, которая является неинерциальной системой. его движение будет искривлённым и неравномерным. Более того, для того, чтобы противодействовать сносу в направлении вращения, он должен мышечным усилием преодолевать действие силы Кориолиса. которое не испытывает его верхний коллега над сценой, хотя траектории обоих в инерциальной системе здания театра будут представлять прямые линии .

Но можно себе представить, что задачей рассматривающихся здесь коллег является именно нанесение прямой линии на вращающейся сцене. В этом случае нижний должен потребовать от верхнего движения по кривой, являющейся зеркальным отражением следа от ранее пролитой краски,оставаясь при этом над любой точкой прямой, проходящей в избранном радиальном направлении. Следовательно, прямолинейное движение в неинерциальной системе отсчёта не будет являться таковым для наблюдателя в инерциальной системе .

Более того, равномерное движение тела в одной системе, может быть неравномерным в другой. Так, две капли краски, упавшие в разные моменты времени из дырявого ведра, как в собственной системе отсчёта, так и в системе неподвижного по отношению к зданию нижнего коллеги (на уже прекратившей вращение сцене), будут двигаться по прямой (к центру Земли). Различие будет заключаться в том, что для нижнего наблюдателя это движение будет ускоренным. а для верхнего его коллеги, если он, оступившись, будет падать. двигаясь вместе с любой из капель, расстояние между каплями будет увеличиваться пропорционально первой степени времени, то есть взаимное движение капель и их наблюдателя в его ускоренной системе координат будет равномерным со скоростью v <\displaystyle v> . определяемой задержкой Δ t <\displaystyle \Delta t> между моментами падения капель:

Поэтому форма траектории и скорость движения по ней тела, рассматриваемая в некоторой системе отсчёта, о которой заранее ничего не известно. не даёт однозначного представления о силах, действующих на тело. Решить вопрос о том, является ли эта система в достаточной степени инерциальной, можно лишь на основе анализа причин возникновения действующих сил.

Таким образом, в неинерциальной системе:

  • Кривизна траектории и/или непостоянство скорости являются недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело действуют внешние силы, которые в конечном случае могут быть объяснены гравитационными или электромагнитными полями.
  • Прямолинейность траектории является недостаточным аргументом в пользу утверждения о том, что на движущееся по ней тело не действуют никакие силы.
  1. Понятие траектории достаточно наглядно может быть проиллюстрировано трассой бобслея. (Если по условиям задачи можно пренебречь её шириной). И именно трассой, а не самим бобом .
  2. Так улица, в начале которой висит знак «кирпич» останется в принципе траекторией движения по ней. А поезда разной массы, движущиеся под различными тяговыми усилиями на сцепных крюках локомотивов и потому с разной скоростью, будут двигаться по одной и той же траектории, определяемой формой рельсового пути, налагающего на движение несвободного тела (поезда) конкретные связи. интенсивность которых будет в каждом случае различной
  3. Так, Луна обращается вокруг Земли только в системе отсчёта, связанной с их общим центром гравитации (находится внутри Земного шар). В системе же отсчёта, началом которой является Солнце, Луна обращается вокруг него по той же эллиптической орбите, что и Земля, но с периодическими отклонениями от неё на величину расстояния от Луны до Земли. Никакого взаимного обращения этих небесных тел в этом случае просто нет. Наличие земного притяжения для объяснения формы траектории Луны в системе координат, связанной с Солнцем, вообще не обязательно. Так, исчезни Земля, Луна могла бы продолжать двигаться, как самостоятельное небесное тело, по той же самой старой траектории, а её периодические возмущения можно было бы тогда в качестве гипотезы объяснить изменением силы тяготения, скажем, за счёт вариации массы Солнца по причине пульсации его светимости (что, кстати, и наблюдается в определённых пределах в действительности). И обе упомянутые формы траектории истинны и оба объяснения их формы на основании правильно проведённого анализа действующих сил справедливы. Но они исключают друг друга, как исключается возможность одновременного рассмотрения при выборе той или иной системы координат.
  4. С. Э. Хайкин . Силы инерции и невесомость. М.,1967 г. Издательство «Наука». Главная редакция физико-математической литературы.
  5. Физический энциклопедический словарь/ Гл. ред. А. М. Прохоров. Ред.кол. Д. М. Алексеев, А. М. Бонч-Бруевич,А. С. Боровик-Романов и др. М. Сов.энциклопедия, 1983. — 323 с.,ил, 2 л.цв.ил. страница 282.

В физике есть ещё одна формула измерения траектории (пути): s=4Atv, где A — амплитуда, t — время, v — частота колебаний

  • Ньютон И. Математические начала натуральной философии. Пер. и прим. А. Н. Крылова. М. Наука, 1989
  • Фриш С. А. и Тиморева А. В. Курс общей физики, Учебник для физико-математических и физико-технических факультетов государственных университетов, Том I. М. ГИТТЛ, 1957

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *