Термохимические реакции

Термохимические уравнения реакций

Уравнения химических реакций, в которых указаны изменения энтальпии (тепловые эффекты реакций), называются термохимическими. При написании термохимических уравнений указывается и агрегатное состояние вещества. Твердое вещество, жидкость и газ обозначаются соответствующими символами – (тв), (ж) и (г), т.к. величина изменения энтальпии зависит от агрегатного состояния реагирующих веществ и продуктов реакции.

Тепловые эффекты реакций выражают в килоджоулях (кДж) для одного моля реагента или (реже) для моля продукта реакции.

Например, термохимическое уравнение реакции синтеза аммиака:

показывает, что при взаимодействии 1 моль азота N2 и 3 моль водорода Н2 образуется 2 моль аммиака NH3 и выделяется количество теплоты, равное 92,4 кДж ( Н= – 92, 4 кДж).

Представленное ниже термохимическое уравнение реакции сгорания водорода в кислороде:

показывает, что на 1 моль сгоревшего водорода или на 1 моль образовавшейся воды выделяется 286 кДж теплоты (Q = 286 кДж, &#&16;Н = -286 кДж). Эта реакция является экзотермической и характеризуется значительным тепловым эффектом. Недаром водород считается эффективным топливом будущего.

Термохимические уравнения подчиняются закону Лавуазье-Лапласа. тепловой эффект прямой реакции равен по абсолютной величине, но противоположен по знаку тепловому эффекту обратной реакции.

Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества. Например, реакция горения водорода в кислороде является экзотермической:

В то же время, реакция разложения воды электрическим током требует затрат энергии и является эндотермической:

Закон Лавуазье–Лапласа является следствием закона сохранения энергии.

Особенности термохимических уравнений.

Тепловые эффекты химических реакций

Тепловой эффект реакции — количество теплоты, которое выделяется или поглощается системой в результате протекания химической реакции. Это может быть DН (Р,Т = const) или DU (V,T = const).

Если в результате реакции теплота выделяется, т.е. энтальпия системы понижается (DН < 0 ), то реакция называется экзотермической.

Реакции, сопровождающиеся поглощением теплоты, т.е. с повышением энтальпии системы (DН > 0), называются эндотермическими.

Как и другие функции состояния, энтальпия зависит от количества вещества, поэтому ее велечену (DН) обычно относят к 1 моль вещества и выражают в кДж/моль.

Обычно функции системы определяют при стандартных условиях. в которые, кроме параметров стандартного состояния, входит стандартная температура T = 298,15 К (25°C). Часто температуру указывают в виде нижнего индекса ( ).

Термохимические уравнения реакций — уравнения, в которых указан тепловой эффект, условия реакций и агрегатные состояния веществ. Обычно в качестве теплового эффекта указывается энтальпия реакции. Например,

Тепловой эффект можно записать в уравнении реакции:

В химической термодинамике первая форма записи употребляется чаще.

Особенности термохимических уравнений.

1. Тепловой эффект зависит от массы реагирующего вещества, поэ-

тому его обычно рассчитывают на один моль вещества. В связи с этим в термохимических уравнениях можно использовать дробные коэффициенты. Например, для случая образования одного моля хлороводорода термохимическое уравнение записывается так:

2. Тепловые эффекты зависят от агрегатного состояния реагентов; оно указывается в термохимических уравнениях индексами: ж — жидкое, г — газообразное, т — твердое или к – кристаллическое, р – растворенное.

3. С термохимическими уравнениями можно производить алгебраические действия (их можно складывать, вычитать, умножать на любые коэффициенты вместе с тепловым эффектом).

Термохимические уравнения более полно, чем обычные, отражают происходящие при реакции изменения — они показывают не только качественный и количественный состав реагентов и продуктов, но и количественные превращения энергии, которыми данная реакция сопровождается.

Термохимические реакции

2) 40г(MgO) 120г (MgSO4 )

Ответ: m(MgSO4 ) = 240г

3.Получить кислород О2. Доказать опытным путем, что полученный газ — О2 .

В пробирку из тугоплавкого стекла (см. рис.) помещают несколько граммов твердого KMnO 4. закрывают пробкой с газоотводной трубкой, конец которой помещают либо в пустой стакан (метод собирания кислорода вытеснением воздуха), либо в перевернутую пробирку, заполненную водой (метод собирания кислорода вытеснением воды). Нагревают пробирку на пламени спиртовки и собирают образующийся газообразный кислород.

В стакан, заполненный кислородом, опускают тлеющую лучинку. Она тут же ярко вспыхивает, что подтверждает наличие кислорода в стакане. Кислород способствует горению.

3.Реакции, характерные для серной кислоты.

а) Действие индикатора.

В пробирку поместить несколько капель раствора серной кислоты и добавить 2-3 капли раствора индикатора-метилоранжа. Раствор приобретает розовую окраску, характерную для растворов кислот.

б) Взаимодействие с основаниями (реакция нейтрализации).

В пробирку из опыта а) добавлять по каплям раствор щелочи КОН до перехода окраски с розовой на желтую (момент полной нейтрализации):

2H + + 2OH — = 2H2 O

в) Взаимодействие с основными и амфотерными оксидами.

В пробирку поместить небольшое количество твердого оксида цинка ZnO и добавлять по каплям раствор серной кислоты до полного растворения оксида:

2H + + ZnO = Zn 2+ + H2 O

г) Взаимодействие с металлами, стоящими в ряду активности до водорода.

В пробирку поместить гранулу алюминия и добавить 2-3 мл раствора серной кислоты. Наблюдается выделение газа:

д) Взаимодействие с солями кислот более слабых, чем серная (например угольная).

В пробирку поместить 1 мл раствора карбоната натрия Na2 CO3 и добавлять по каплям раствор серной кислоты. Наблюдается энергичное выделение газа:

Ответ: V(H2 ) = 4/4 л

3.Реакции, характерные для соляной кислоты.

а) Действие индикатора.

В пробирку поместить 5-6 капель раствора соляной кислоты и добавить 2-3 капли раствора индикатора-метилоранжа. Раствор приобретает розовую окраску, характерную для растворов кислот.

б) Взаимодействие с основаниями (реакция нейтрализации).

В пробирку из опыта а) добавлять по каплям раствор щелочи NaОН до перехода окраски с розовой на желтую (момент полной нейтрализации):

HCl + NaOH = NaCl + H2 O

в) Взаимодействие с металлами, стоящими в ряду активности до водорода.

В пробирку поместить гранулу цинка и добавить 1-2мл раствора соляной кислоты. Наблюдается выделение газа:

Zn + 2H + = Zn 2+ + H2

г) Взаимодействие с основными и амфотерными оксидами.

В пробирку поместить небольшое количество твердого оксида магния MgO и добавлять по каплям раствор кислоты до полного растворения оксида:

MgO + 2H + = Mg 2+ + H2 O

д) Взаимодействие с солями кислот более слабых, чем соляная (например угольная).

В пробирку поместить 1 мл раствора карбоната натрия Na2 CO3 и добавлять по каплям раствор соляной кислоты. Наблюдается энергичное выделение газа:

3.Получить и собрать СО2 .Доказать, что полученный газ — СО2 .

В пробирку помещают небольшой кусочек мела СаСО3 и добавляют сверху раствор кислоты НСl. Наблюдается бурное выделение углекислого газа:

Образующийся газ пропускают с помощью трубки через раствор известковой воды Са(ОН)2 и наблюдается помутнение раствора из-за образования нерастворимого СаСО3 :

Углекислый газ не поддерживает горения. В стакан с углекислым газом опускаем горящую лучинку, она тут же гаснет.

m(H2 O)=100мл w = m(в-ва)/ m(р-ра) * 100%

w(р-ра) -. m(р-ра)= m(H2 O) + m(в-ва) = 100мл + 50г = 150г

w(р-ра) = 50/150 *100% = 33.3%

Ответ: w(р-ра) = 33.3%

3.Проделать реакции, характерные для глюкозы.

Глюкоза проявляет свойства многоатомных спиртов и альдегидов.

1.Доказать наличие в глюкозе функциональных групп ОН — можно, проделав реакцию с гидроксидом меди (в избытке щелочи):

К полученному осадку добавьте равный объем раствора глюкозы, смесь взболтайте — раствор становится синим.

2.Если нагреть смесь раствора глюкозы и гидроксида меди (II), то будет наблюдаться выпадение желтого (гидроксид меди (I)), затем красного осадка (оксид меди (I)):

3.Определить, в какой из пробирок находится NaOH, Na2 SO4 .

В пробирки с растворами добавить 2-3 капли раствора хлорида бария. Та пробирка, в которой образуется белый осадок, содержит соль серной кислоты:

Дано: 14г 0.5моль х

1) v(CаО)= m/M v(CaO)= 14/56=0.25 моль,

значит масса H2 SO4 дана в избытке.

2) Расчет ведем по веществу, которое дано в недостатке:

56г (CаО) 136 г Х = 14 * 136 / 56г

Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

презентация [759,6 K], добавлен 27.04.2015

Молекулярные, электронные и термохимические уравнения. Амфотерность гидроксида олова. Механизм образования ионной химической связи. Тепловой эффект реакции. Равновесие гетерогенной системы. Вяжущие свойства стройматериалов. Реакция «серебряного зеркала».

контрольная работа [49,8 K], добавлен 28.11.2011

Изучение реакций циклических ангидридов с соединениями, содержащими аминогруппу. Осуществление синтеза веществ на основе аддуктов реакции Дильса-Альдера. Получение имидокислоты на основе циклопентадиена с малеиновым ангидридом и аминомасляной кислоты.

контрольная работа [163,7 K], добавлен 04.02.2013

Получение сульфата аммония из аммиака и серной кислоты в лабораторных условиях. Тепловые эффекты, сопровождающие химические реакции. Приготовление и смешивание растворов. Получение сульфата аммония из сернистого газа, мирабилита, гипса и кислорода.

курсовая работа [994,1 K], добавлен 23.05.2015

Изменение скорости химической реакции при воздействии различных веществ. Изучение зависимости константы скорости автокаталитической реакции окисления щавелевой кислоты перманганатом калия от температуры. Определение энергии активации химической реакции.

курсовая работа [270,9 K], добавлен 28.04.2015

Реакции, протекающие между ионами в растворах. Порядок составления ионных уравнений реакций. Формулы в ионных уравнениях. Обратимые и необратимые реакции обмена в водных растворах электролитов. Реакции с образованием малодиссоциирующих веществ.

презентация [1,6 M], добавлен 28.02.2012

Ниаламид как гидразид изоникотиновой кислоты, его главные физические и химические свойства, методика определения подлинности и качества. Характерные реакции данного химического соединения, правила его приемки и хранения, показания и противопоказания.

презентация [379,6 K], добавлен 10.02.2015

Восстановление нитробензойной кислоты. Окисление толуола, нитрование бензойной кислоты. Действие галогенирующих агентов. Электрофильное замещение, образование ангидридов кислот. Реакции в ароматическом кольце. Галогенирование по радикальному механизму.

курсовая работа [43,8 K], добавлен 22.10.2011

Составление формул соединений кальция с водородом, фтором и азотом. Определение степени окисления атома углерода и его валентности. Термохимические уравнения реакций, теплота образования. Вычисление молярной концентрации эквивалента раствора кислоты.

контрольная работа [46,9 K], добавлен 01.11.2009

Свойства и применение ацетальдегида, методы получения. Электронная структура реагентов и продуктов реакции, термодинамический анализ, исходные данные для расчёта. Получение ацетальдегида, анализ факторов, влияющих на протекание реакции окисления этилена.

дипломная работа [1,6 M], добавлен 08.12.2010

Термохимические реакции
Главная | О нас | Обратная связь

Тепловой эффект химической реакции. Термохимия. Закон Гесса

Все химические процессы сопровождаются тепловыми эффектами.

Тепловым эффектом химической реакции называется теплота, выделяемая или поглощаемая в результате превращения исходных веществ в количествах, соответствующих уравнению химической реакции. При этом единственной работой является работа расширения, а исходные вещества и продукты реакции должны иметь одинаковую температуру.

Независимость теплоты химической реакции от пути процесса при р = const и Т = const (A = pDV) впервые была установлена в 1836 г. русским ученым Г.И. Гессом. Эта закономерность известна как закон Гесса: тепловой эффект химической реакции не зависит от пути ее протекания, а зависит лишь от природы и физического состояния исходных веществ и продуктов реакции.

Закон составляет теоретическую основу термохимии. т.е. раздела химической термодинамики, в котором вычисляются тепловые эффекты различных физико-химических процессов: химических реакций, фазовых переходов, процессов растворения и кристаллизации и т. д.

Следует помнить, что все термохимические расчеты проводятся при стандартных условиях: Т = 298 К (25 0 С), р = 101,3 кПа (1 атм.), например: DН 0 298 – стандартная энтальпия.

В термохимии уравнение химической реакции записывается с указанием теплового эффекта реакции (энтальпии) и агрегатного состояния веществ. Эти уравнения называют термохимическими уравнениями:

В термодинамике принято:

· в экзотермических процессах теплота выделяется, для них DН < 0 и DU < 0 (т.е. теплосодержание и внутренняя энергия системы уменьшаются);

· в эндотермических процессах теплота поглощается, для них DН > 0 и DU > 0 (т.е. теплосодержание и внутренняя энергия системы возрастают).

В термохимических расчетах широко используются три следствия из закона Гесса.

Первое следствие: тепловой эффект прямой реакции равен тепловому эффекту обратной реакции с противоположным знаком: DНпр. = — DНобр .

Второе следствие: тепловой эффект реакции равен разности между суммой теплот (энтальпий) сгорания исходных веществ и суммой теплот (энтальпий) сгорания продуктов реакции с учетом стехиометрических коэффициентов веществ, участвующих в процессе:

где ni – стехиометрический коэффициент для i-того вещества в уравнении реакции, ∆Нсгi – теплота (энтальпия) сгорания i-того вещества.

Теплота (энтальпия) сгорания – количество теплоты, которое выделяется при полном сгорании одного моля вещества до высших окислов при данных условиях (р, Т). Численные значения теплот сгорания определяются по справочным изданиям.

Третье следствие: тепловой эффект реакции равен разности между суммой теплот (энтальпий) образования продуктов реакции и суммой теплот (энтальпий) образования исходных веществ с учетом стехиометрических коэффициентов веществ, участвующих в процессе:

где ni – стехиометрический коэффициент для i-того вещества в уравнении реакции, ∆Нобр.i – теплота (энтальпия) образования i-того вещества.

Под теплотой (энтальпией) образования понимается тепловой эффект реакции образования 1 моль вещества из простых веществ (измеряется в кДж/моль). Обычно используют стандартные энтальпии образования; их обозначают DН 0 обр,298 или DН 0 f,298 (часто один из индексов опускают и обозначают, например, DН 0 298 ). Стандартные энтальпии простых веществ, устойчивых в стандартных условиях (газообразный кислород, жидкий бром, кристаллический йод, ромбическая сера, графит и т.д.) принимаются равными нулю. Численные значения теплот (энтальпий) образования определяются по справочникам.

Если на систему оказать внешнее воздействие, в системе происходят определенные изменения. Если после снятия этого воздействия система может вернуться в первоначальное состояние, то процесс является обратимым. Если после снятия внешнего воздействия систему и окружающую среду нельзя вернуть в первоначальное состояние, то процесс – необратимый.

Процессы, протекающие без подвода энергии от внешнего источника, называются самопроизвольными. Например: падение камня с высоты, переход тепла от более нагретого тела к менее нагретому, стекание воды по желобу. При этом система из более упорядоченного состояния переходит в состояние менее упорядоченное и более вероятное. Человеческий опыт показал, что самопроизвольные процессы в обратном направлении не могут протекать самопроизвольно, т.е. самопроизвольно камень не полетит вверх, теплота не перейдет от холодного тела к нагретому, а вода не потечет вверх по желобу.

Многие химические процессы также протекают самопроизвольно, например, образование ржавчины на железе, растворение соли в воде и др. Каковы движущие силы и критерии самопроизвольных процессов?

Частицам (молекулам, атомам, ионам) присуще стремление к беспорядочному движению, поэтому система стремится перейти из более упорядоченного состояния в менее упорядоченное. Так, если, например, баллон с газом (состояние I) соединить с сосудом, то газ из баллона будет распределяться по всему объему сосуда (состояние II). При этом система из более упорядоченного состояния (с меньшим беспорядком) переходит в состояние менее упорядоченное (с большим беспорядком). Количественной мерой беспорядка системы является термодинамическая функция состояния — энтропия (S). Ее численное значение можно определить следующим образом: S = R. T. lnW, т.е. S пропорциональна lnW, где W – термодинамическая вероятность состояния системы или число вероятных микросостояний, которыми может быть реализовано данное макросостояние; W > 1.

При переходе системы из более упорядоченного состояния в менее упорядоченное (из состояния I в состояние II) энтропия системы возрастает, т.е. DS = S2 – S1 > 0.

Переход из менее упорядоченного состояния в более упорядоченное ( из состояния II в состояние I) без воздействия извне невозможен. Такой процесс называется несамопроизвольным. Понятно, что в рассматриваемом примере представляется невероятным, чтобы газ сам собой собрался в баллоне. Очевидно, что в этом случае энтропия системы уменьшается (DS = S2 – S1 < 0). Т.е.:

· все процессы, протекающие с уменьшением порядка в расположении частиц, сопровождаются увеличением энтропии, являются самопроизвольными процессами (процессы растворения, плавления, испарения, нагревания);

· все процессы, протекающие с увеличением порядка в расположении частиц, сопровождаются уменьшением энтропии, являются несамопроизвольными процессами (процессы конденсации, кристаллизации, охлаждения).

Таким образом, в изолированной системе самопроизвольные процессы протекают в сторону увеличения энтропии, DS > 0 (II закон термодинамики).

Системы, в которых протекают химические реакции, не являются изолированными, т.к. они сопровождаются тепловым эффектом, т.е. системы обмениваются энергией с окружающей средой. В неизолированных системах возможны процессы, в которых энтропия понижается. Например, при отводе тепла в окружающую среду расплав или стекло могут закристаллизоваться, а пар сконденсироваться (т.е. DS < 0).

В отличие от энтальпии, для любого вещества абсолютное значение энтропии можно вычислить либо определить экспериментальным путем. Энтропии веществ принято относить к стандартным условиям: Т = 298 К; Р = 101,3 КПа. Обозначают S 0 298 и называют стандартной энтропией (численное значение стандартной энтропии определяется по справочным изданиям). Энтропия вещества измеряется в Дж/моль. К.

Значениями энтропии веществ пользуются для определения изменения энтропии системы в результате соответствующих реакций. Например для реакции, записанной в общем виде:

аА +вВ + … = dD + eE + …

изменение энтропии выразится:

Энтропия системы измеряется в Дж/К.

/ Термохимия

Раздел — химической термодинамики ,изучающий тепловые эффекты химических реакций и фазовых превращений ,называется термохимией.

В ходе химической реакции происходит перестройка энергетических уровней атомов, молекул, изменяется внутренняя энергия и, следовательно, должно наблюдаться поглощение или выделение теплоты — тепловой эффект .

В изохорно-изотермических условиях это Qv = ΔU. а в изобарно-изотермических условиях протекания реакции это Qp = ΔH .

Теплота равная термодинамическим функциям состояния сама является термодинамической функцией состояния и, следовательно, не зависит от пути процесса, а зависит только от начального и конечного состояния системы. Этот закон был установлен в 1841 г. русским акад. Г.И. Гессом.

Он лежит в основе термохимии и распространяется на все процессы, сопровождающиеся тепловыми эффектами — фазовые превращения, растворение, испарение, кристаллизация и т.д.

Поскольку в большинстве случаев химические реакции протекают при постоянном давлении, то в дальнейшем будем рассматривать изобарические условия и тепловой эффект будет являться энтальпией реакции Н. Если исходные вещества и продукты реакции находятся в стандартном состоянии, то тепловой эффект реакции называется стандартной энтальпией реакции Н 0 .

Стандартное состояние веществ не зависит от температуры. Если в ходе реакции теплота выделяется, т.е. энтальпия системы понижается (ΔН < 0), то реакция называется экзотермической. Реакция, протекающая с поглощением теплоты, т.е. с повышением энтальпии системы (ΔН > 0), называется эндотермической.

Тепловой эффект реакции относительно мало зависит от температуры реакции и давления, поэтому в расчетах можно использовать стандартные значения энтальпий реакций (Н 0 ) .

Термохимия оперирует термохимическими уравнениями. В них указывают тепловой эффект, агрегатные состояния веществ и допускаются дробные коэффициенты.

С термохимическими уравнениями можно оперировать, как и с алгебраическими уравнениями.

Тепловой эффект реакции зависит от природы и состояния исходных веществ и конечных продуктов, но не зависит от пути реакции.

Закон лежит в основе термохимических расчетов. Рассмотрим реакцию сгорания метана:

Термохимические реакции

Эту же реакцию можно провести через стадию образования СО:

Термохимические реакции

Термохимические реакции

Термохимические реакции

Итак, видно, тепловой эффект реакции, протекающей по двум путям, одинаков.

При термохимических расчетах для определения тепловых эффектов применяют следствия из закона Гесса.

Следствия закона Гесса:

Тепловой эффект химической реакции равен разности между суммами теплот (энтальпий) образования продуктов реакции и исходных веществ с учетом стехиометрических коэффициентов в уравнении.

Тепловой эффект реакции:

рассчитывается по уравнению

Для термохимических расчетов используют стандартные энтальпии образования веществ Δf H 0 – это изменение энтальпии в процессе образования 1 моля соединения в стандартном состоянии из простых веществ, тоже находящихся в стандартном состоянии в устойчивых формах и модификациях.

Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях, условно принимаются равными нулю.

Стандартные энтальпии образования веществ приведены в справочниках термодинамических величин и известны примерно для 8000 тысяч веществ, что позволяет расчетным путем установить тепловой эффект любого процесса.

Важно для реакций, протекающих с участием органических веществ.

Тепловой эффект реакции равен разности между суммами теплот (энтальпий) сгорания исходных веществ и продуктов реакции с учетом стехиометрических коэффициентов в уравнении реакции.

Теплота (энтальпия) сгорания – это тепловой эффект сгорания 1 моль органического вещества до СО2 и Н2 О. Остальные продукты определяются конкретно для каждого случая.

Термохимические уравнения.

Теплота, высвобождаемая или поглощаемая конкретной химической реакцией, пропорциональна степени превращения реагентов, определяемой по количеству любого из расходуемых либо образующихся продуктов. Изменение внутренней энергии или энтальпии реагирующей системы определяют по химическому уравнению реакции. Например, сгорание смеси газообразных метана и кислорода описывается термохимическим уравнением

Термохимические реакции

Здесь буквы в скобках обозначают агрегатные состояния веществ (газ или жидкость). Символом DH ° обозначается изменение энтальпии в химическом превращении при стандартных давлении 1 атм и температуре 298 K (25° С) (знак градуса в верхнем индексе H указывает, что данная величина относится к веществам в стандартных состояниях (при p = 1 атм и T = 298 K)). Химическая формула каждого вещества в таком уравнении обозначает вполне определенное количество вещества, а именно его молекулярную массу, выраженную в граммах. Молекулярная масса получается сложением атомных масс всех элементов, входящих в формулу, с коэффициентами, равными числу атомов данного элемента в молекуле. Молекулярная масса метана равна 16,042, и, согласно предыдущему уравнению, при сгорании 16,042 г (1 моля) метана получаются продукты, энтальпия которых на 212,798 ккал меньше энтальпии реагентов. В соответствии с уравнением (5) такое количество теплоты высвобождается, когда 1 моль метана сгорает в кислороде при постоянном давлении 1 атм. Соответствующее уменьшение внутренней энергии системы в ходе реакции составляет 211,615 ккал. Разница междуDH ° и DU ° равна -1,183 ккал и представляет работу p (V2V1 ), совершаемую, когда 3 моля газообразных реагентов сжимаются при давлении 1 атм до 1 моля газообразного диоксида углерода и 2 молей жидкой воды.




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *