Термодинамические системы

Термодинамические системы и процессы. Стандартное состояние

Термодинамика – это наука, изучающая общие закономерности протекания процессов, сопровождающихся выделением, поглощением и превращением энергии. Химическая термодинамика изучает взаимные превращения химической энергии и других ее форм – тепловой, световой, электрической и т.д. устанавливает количественные законы этих переходов, а также позволяет предсказать устойчивость веществ при заданных условиях и их способность вступать в те или иные химические реакции. Объект термодинамического рассмотрения называют термодинамической системой или просто системой.

Система – любой объект природы, состоящий из большого числа молекул (структурных единиц) и отделённый от других объектов природы реальной или воображаемой граничной поверхностью (границей раздела).

Состояние системы – совокупность свойств системы, позволяющих определить систему с точки зрения термодинамики.

Типы термодинамических систем :

I. По характеру обмена веществом и энергией с окружающей средой :

1. Изолированная система – не обменивается со средой ни веществом, ни энергией (&#&16;m = 0; &#&16;E = 0) — термос.

2. Закрытая система – не обменивается со средой веществом, но может обмениваться энергией (закрытая колба с реагентами).

3. Открытая система – может обмениваться со средой, как веществом, так и энергией (человеческое тело).

II. По агрегатному состоянию :

1. Гомогенная – отсутствие резких изменений физических и химических свойств при переходе от одних областей системы к другим (состоят из одной фазы).

2. Гетерогенная – две или более гомогенные системы в одной (состоит из двух или нескольких фаз).

Фаза – это часть системы, однородная во всех точках по составу и свойствам и отделенная от других частей системы поверхностью раздела. Примером гомогенной системы может служить водный раствор. Но если раствор насыщен и на дне сосуда есть кристаллы солей, то рассматриваемая система – гетерогенна (есть граница раздела фаз). Другим примером гомогенной системы может служить простая вода, но вода с плавающим в ней льдом – система гетерогенная.

Фазовый переход — превращения фаз (таяние льда, кипение воды).

Термодинамический процесс — переход термодинамической системы из одного состояния в другое, который всегда связан с нарушением равновесия системы.

Классификация термодинамических процессов :

7. Изотермический — постоянная температура – T = const

8. Изобарный — постоянное давление – p = const

9. Изохорный — постоянный объем – V = const

Стандартное состояние — это состояние системы, условно выбранное в качестве стандарта для сравнения.

Для газовой фазы — это состояние химически чистого вещества в газовой фазе под стандартным давлением 100 кПа (до 1982 года — 1 стандартная атмосфера, 101 325 Па, 760 мм ртутного столба), подразумевая наличие свойств идеального газа.

Для беспримесной фазы. смеси или растворителя в жидком или твёрдом агрегатном состоянии — это состояние химически чистого вещества в жидкой или твёрдой фазе под стандартным давлением.

Для раствора — это состояние растворённого вещества со стандартной моляльностью 1 моль/кг, под стандартным давлением или стандартной концентрации, исходя из условий, что раствор неограниченно разбавлен.

Для химически чистого вещества — это вещество в чётко определённом агрегатном состоянии под чётко определённым, но произвольным, стандартным давлением.

В определение стандартного состояния не входит стандартная температура. хотя часто говорят о стандартной температуре, которая равна 25°C (298,15 К).

2.2. Основные понятия термодинамики: внутренняя энергия, работа, теплота

Внутренняя энергия U — общий запас энергии, включая движение молекул, колебания связей, движение электронов, ядер и др. т.е. все виды энергии кроме кинетической и потенциальной энергии системы в целом.

Нельзя определить величину внутренней энергии какой-либо системы, но можно определить изменение внутренней энергии &#&16;U, происходящее в том или ином процессе при переходе системы из одного состояния (с энергией U1 ) в другое (с энергией U2 ):

&#&16;U зависит от вида и количества рассматриваемого вещества и условий его существования.

Суммарная внутренняя энергия продуктов реакции отличается от суммарной внутренней энергии исходных веществ, т.к. в ходе реакции происходит перестройка электронных оболочек атомов взаимодействующих молекул.

Энергия может передаваться от одной системы к другой или от одной части системы к другой в форме теплоты или в форме работы.

Теплота (Q) – форма передачи энергии путем хаотического, неупорядоченного движения частиц.

Работа (А) – форма передачи энергии путем упорядоченного перемещения частиц под действием каких-либо сил.

Единицей измерения работы, теплоты и внутренней энергии в системе СИ служит джоуль (Дж). 1 джоуль – это работа силы в 1 ньютон на расстоянии 1 м (1 Дж = 1 Н×м = 1 кг×м 2 /с 2 ). В старой химической литературе широко использовалась единица количества теплоты и энергии калория (кал). 1 Калория – это такое количество теплоты, которое необходимо для нагревания 1 г воды на 1°C. 1 Кал = 4,184 Дж≈4,2 Дж. Теплоты химических реакций удобнее выражать в килоджоулях или килокалориях: 1 кДж = 1000 Дж, 1 ккал = 1000 кал.

Термодинамические системы
Главная | О нас | Обратная связь

Термодинамические системы

Термодинамическая система – это часть материального мира, отделенная от окружающей среды реальными или воображаемыми границами и являющаяся объектом исследования термодинамики. Окружающая среда значительно больше по объему, и поэтому изменения в ней незначительны по сравнению с изменением состояния системы. В отличие от механических систем, которые состоят из одного или нескольких тел, термодинамическая система содержит очень большое число частиц, что порождает совершенно новые свойства и требует иных подходов к описанию состояния и поведения таких систем. Термодинамическая система представляет собой макроскопический объект .

Классификация термодинамических систем

Термодинамическая система состоит из компонентов. Компонент — это вещество, которое может быть выделено из системы и существовать вне ее, т.е. компоненты – это независимые вещества.

— Двухкомпонентные, или бинарные.

2. По фазовому составу – гомогенные и гетерогенные

Гомогенные системы имеют одинаковые макроскопические свойства в любой точке системы, прежде всего температуру, давление, концентрацию, а также многие другие, например, показатель преломления, диэлектрическую проницаемость, кристаллическую структуру и др. Гомогенные системы состоят из одной фазы.

Фаза – это однородная часть системы, отделенная от других фаз поверхностью раздела и характеризующаяся своим уравнением состояния. Фаза и агрегатное состояние – перекрывающиеся, но не идентичные понятия. Агрегатных состояний только 4, фаз может быть гораздо больше.

Гетерогенные системы состоят минимум из двух фаз.

3. По типам связей с окружающей средой (по возможностям обмена с окружающей средой).

Изолированная система не обменивается с окружающей ни энергией, ни веществом. Это идеализированная система, которую, в принципе нельзя экспериментально изучать.

Закрытая система может обмениваться с окружающей средой энергией, но не обменивается веществом.

Открытая система обменивается и энергией, и веществом

Состояние ТДС – это совокупность всех ее измеримых макроскопических свойств, имеющих, следовательно, количественное выражение. Макроскопический характер свойств означает, что их можно приписать только к системе в целом, а не отдельным частицам, которые составляют ТДС (Т, р, V, c, U, nk ). Количественные характеристики состояния связаны между собой. Поэтому существует минимальный набор характеристик системы, называемых параметрами . задание которых позволяет полностью описать свойства системы. Количество этих параметров зависит от типа системы. В простейшем случае для закрытой гомогенной газовой системы в состоянии равновесия достаточно задать только 2 параметра. Для открытой системы кроме этих 2 характеристик системы требуется задать число молей каждого компонента.

Термодинамические переменные подразделяются:

внешние , которые определяются свойствами и координатами системы в окружающей среде и зависят от контактов системы с окружением, например, масса и количество компонентов, напряженность электрического поля, число таких переменных ограничено;

внутренние, которые характеризуют свойства системы, например, плотность, внутренняя энергия, число таких параметров неограниченно;

— экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем, энергия, энтропия, теплоемкость;

интенсивные, которые не зависят от массы системы, например, температура, давление.

Параметры ТДС связаны между собой соотношением, которое носит название уравнение состояние системы. Общий вид его f (p,V, T) = 0. Одна из важнейших задач ФХ – найти уравнение состояния любой системы. Пока точное уравнение состояния известно лишь для идеальных газов (уравнение Клапейрона — Менделеева).

где R – универсальная газовая постоянная = 8.314 Дж/(моль.К) .

[p] = Па, 1атм = 1,013*10 5 Па = 760 мм рт.ст.,

[V] = м 3. [T] = К, [n] = моль, N = 6.02*1023 моль-1. Реальные газы лишь приближенно описываются данным уравнением, и чем выше давление и ниже температура, тем больше отклонение от данного уравнения состояния.

Различают равновесное и неравновесное состояния ТДС.

Классическая термодинамика обычно ограничивается рассмотрением равновесных состояний ТДС. Равновесие — это такое состояние, к которому самопроизвольно приходит ТДС, и в котором она может существовать бесконечно долго в отсутствие внешних воздействий. Для определения равновесного состояния всегда требуется меньшее количество параметров, чем для неравновесных систем.

Равновесное состояние подразделяют на:

устойчивое (стабильное) состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние;

метастабильное состояние, при котором некоторые конечные воздействия вызывают конечные изменения состояния, которые не исчезают при устранения этих воздействий.

Изменение состояния ТДС связанное с изменением хотя бы одной из ее термодинамических переменных, называют термодинамическим процессом. Особенностью описания термодинамических процессов является то, что они характеризуются не скоростями изменения свойств, а величинами изменений. Процесс в термодинамике – это последовательность состояний системы, ведущая от начального набора термодинамических параметров к — конечному. Различают следующие термодинамические процессы:

самопроизвольные , для осуществления которых не надо затрачивать энергию;

несамопроизвольные , происходящие только при затрате энергии;

— необратимые (или неравновесные) – когда в результате процесса невозможно возвратить систему к первоначальному состоянию.

обратимые – это идеализированные процессы, которые проходят в прямом и обратном направлении через одни и те же промежуточные состояния, и после завершения цикла ни в системе, ни в окружающей среде не наблюдается никаких изменений.

Функции состояния – это характеристики системы, которые зависят только от параметров состояния, но не зависят от способа его достижения.

Функции состояния характеризуются следующими свойствами:

— бесконечно малое изменение функции f является полным дифференциалом df;

— изменение функции при переходе из состояния 1 в состояние 2 определяется только этими состояниями ∫ df = f2 – f1

— в результате любого циклического процесса функция состояния не изменяется, т.е. равна нулю.

Теплота и работа – способы обмена энергией между ТДС и окружающей средой. Теплота и работа характеристики процесса, они не являются функциями состояния.

Работа — форма обмена энергией на макроскопическом уровне, когда происходят направленное перемещение объекта. Работа считается положительной, если ее совершает система против внешних сил.

Теплота – форма обмена энергией на микроскопическом уровне, т.е. в форме изменения хаотического движения молекул. Принято считать положительной теплоту, полученную системой, и работу, совершенную над ней, т.е. действует “эгоистический принцип”.

Наиболее часто используемыми единицами измерения энергии и работы, в частности, в термодинамике являются джоуль (Дж) в системе СИ и внесистемная единица – калория (1 кал = 4,18 Дж).

В зависимости от характера объекта различают разные виды работы:

1. Механическая — перемещение тела

Работа – скалярное произведение 2-х векторов силы и перемещения, т.е.

|dАмех | = F dl cos &#&45;. Если направление внешней силы противоположно перемещению, совершаемому внутренними силами, то cos &#&45; < 0.

2. Работа расширения (чаще всего рассматривается расширение газа)

Однако нужно иметь в виду, что это выражение справедливо только для обратимого протекания процесса.

3. Электрическая – перемещение электрических зарядов

где j — электрический потенциал.

4. Поверхностная – изменение площади поверхности,

где s — поверхностное натяжение.

5. Общее выражение для работы

Y – обобщенная сила, dx — обобщенная координата, таким образом работа может рассматриваться как произведение интенсивного фактора на изменение экстенсивного.

6. Все виды работы, кроме работы расширения, называются полезной работой (dА’ ). dА = рdV + dА’ (2.5)

7. По аналогии можно ввести понятие химической работы, когда направленно перемещается k -ое химическое вещество, nk – экстенсивное свойство, при этом интенсивный параметр mk называется химическим потенциалом k -ого вещества

Термодинамические системы. Термодинамические параметры и процессы

Термодинамическая система – совокупность макроскопических тел, которые могут взаимо-действовать между собой и с другими телами (внешней средой) – обмениваться с ними энергией и веществом. Обмен энергией и веществом может происходить как внутри самой системы между ее частями, так и между системой и внешней средой. В зависимости от возможных способов изоляции системы от внешней среды различают несколько видов термодинамических систем.

Открытой системой называется термодинамическая система, которая может обмениваться веществом и энергией с внешней средой. Типичными примерами таких систем могут служить все живые организмы, а также жидкость, масса которой непрерывно уменьшается вследствие испарения или кипения.

Термодинамическая система называется закрытой. если она не может обмениваться с внешней средой ни энергией, ни веществом. Замкнутой системой будем называть термодина-мическую систему, изолированную в механическом отношении, т.е. не способную к обмену энергией с внешней средой путем совершения работы. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной. если она не может обмениваться с другими системами энергией путем теплообмена.

Термодинамическими параметрами (параметрами состояния) называются физические величины, служащие для характеристики состояния термодинамической системы.

Примерами термодинамических параметров являются давление, объем, температура, концентрация. Различают два типа термодинамических параметров: экстенсивные и интенсивные. Первые пропорциональны количеству вещества в данной термодинамической системе, вторые не зависят от количества вещества в системе. Простейшим экстенсивным параметром является объем V системы. Величину v. равную отношению объема системы к ее массе, называют удельным объе-мом системы. Простейшими интенсивными параметрами являются давление р и температура Т .

Давлением называется физическая величина

Термодинамические системы ,

где dFn – модуль нормальной силы, действующей на малый участок поверхности тела пло-
щадью dS .

Если давление и удельный объем имеют ясный и простой физический смысл, то гораздо более сложным и менее наглядным является понятие температуры. Заметим прежде всего, что понятие температуры, строго говоря, имеет смысл только для равновесных состояний системы.

Равновесное состояние термодинамической системы – состояние системы, при котором все параметры имеют определенные значения и в котором система может оставаться сколько угодно долго. Температура во всех частях термодинамической системы, находящейся в равно-весном состоянии, одинакова.

При теплообмене между двумя телами с различной температурой происходит передача теплоты от тела с большей температурой к телу с меньшей температурой. Этот процесс прекра-щается, когда температуры обоих тел выравниваются.

Температура системы, находящейся в равновесном состоянии, служит мерой интенсивности теплового движения атомов, молекул и других частиц, образующих систему. В системе частиц, описываемых законами классической статистической физики и находящихся в равновесном состоянии, средняя кинетическая энергия теплового движения частиц прямо пропорциональна термодинамической температуре системы. Поэтому иногда говорят, что температура характе-ризует степень нагретости тела.

При измерении температуры, которое можно производить только косвенным путем, исполь-зуется зависимость от температуры целого ряда физических свойств тела, поддающихся прямому или косвенному измерению. Например, при изменении температуры тела изменяются его длина и объем, плотность, упругие свойства, электрическое сопротивление и т.д. Изменение любого из этих свойств является основой для измерений температуры. Для этого необходимо, чтобы для одного (выбранного) тела, называемого термометрическим телом, была известна функциональная зависимость данного свойства от температуры. Для практических измерений температуры применяются температурные шкалы, установленные с помощью термометрических тел. В Международной стоградусной температурной шкале температура выражается в градусах Цельсия (°С) [А. Цельсий (1701–1744) – шведский ученый] и обозначается t. причем принимается, что при нормальном давлении 1,01325 × 10 5 Па температуры плавления льда и кипения воды равны, соответственно, 0 и 100 °С. В термодинамической температурной шкале температура выражается в Кельвинах (К) [У. Томсон, лорд Кельвин (1821–1907) – английский физик], обозначается Т и называется термодинамической температурой. Связь между термодинамической температурой Т и температурой по стоградусной шкале имеет вид T = t + 273,15.

Температура T = 0 К (по стоградусной шкале t = –273,15 °С) называется абсолютным нулем температуры, или нулем по термодинамической шкале температур.

Параметры состояния системы разделяются на внешние и внутренние. Внешними парамет-рами системы называются физические величины, зависящие от положения в пространстве и различных свойств (например электрических зарядов) тел, которые являются внешними по отношению к данной системе. Например, для газа таким параметром является объем V сосуда,
в котором находится газ, ибо объем зависит от расположения внешних тел – стенок сосуда. Атмосферное давление является внешним параметром для жидкости в открытом сосуде. Внутренними параметрами системы называются физические величины, зависящие как от положения внешних по отношению к системе тел, так и от координат и скоростей частиц, образующих данную систему. Например, внутренними параметрами газа являются его давление и энергия, которые зависят от координат и скоростей движущихся молекул и от плотности газа.

Под термодинамическим процессом понимают всякое изменение состояния рассматривае-мой термодинамической системы, характеризующееся изменением ее термодинамических параметров. Термодинамический процесс называется равновесным. если в этом процессе система проходит непрерывный ряд бесконечно близких термодинамически равновесных состояний. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью и поэтому не могут быть равновесными. Очевидно, однако, что реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому такие процессы называют квазистатическими .

Примерами простейших термодинамических процессов могут служить следующие процессы:

а) изотермический процесс, при котором температура системы не изменяется (T = const);

б) изохорный процесс, происходящий при постоянном объеме системы (V = const);

в) изобарный процесс, происходящий при постоянном давлении в системе (p = const);

г) адиабатный процесс, происходящий без теплообмена между системой и внешней средой.

1Техническая термодинамика

Тема 1. Основные термодинамические понятия и законы

1.1.Предмет и метод технической термодинамики

Исторически термодинамика возникла как наука, изучающая переход теплоты в механическую работу, что диктовалось необходимостью дать теоретические основы работы тепловых машин.

Принцип построения термодинамики довольно прост. В основу построения технической термодинамики положены три экспериментальных закона и уравнение состояния: первый закон (первое начало термодинамики) — закон сохранения и превращения энергии; второй закон (второе начало термодинамики) указывает направление, по которому протекают естественные явления в природе; третий закон (третье начало термодинамики) утверждает, что абсолютный нуль температуры недостижим.

1.2.Термодинамическая система

Термодинамическая система — тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и веществом.

Термодинамическая система имеет границы, отделяющие ее от окружающей среды. Границы термодинамической системы могут быть как реальными (газ в резервуаре, граница раздела фаз), так и чисто условными в виде контрольной поверхности.

Термодинамическая система может энергетически взаимодействовать с окружающей средой и с другими системами, а также обмениваться с ними веществом. В зависимости от условий взаимодействия с другими системами различают изолированную, замкнутую, открытую и адиабатно изолированную термодинамические системы.

Термодинамическая система, которая не может обмениваться энергией и веществом с другими системами, называется изолированной. В такой системе отдельные части (подсистемы) могут взаимодействовать между собой. Термодинамическая система называется закрытой, если она не может обмениваться веществом с другими системами. Термодинамические системы, которые могут обмениваться веществом с другими системами, называются открытыми.

Термодинамическая система, которая не может обмениваться теплотой с другими системами (окружающей средой), называется теплоизолированной или адиабатно изолированной.

С окружающей средой термодинамическая система может энергетически взаимодействовать посредством передачи теплоты и производства работы.

По роли отдельных тел, входящих в термодинамическую систему, их делят на рабочие тела (РТ), источники теплоты (ИТ) и объекты работы (ОР).

Рабочими телами являются, как правило, газообразные вещества — газы и пары, которые способны значительно изменять свой объём при изменении внешних условий.

В тех состояниях, когда можно пренебречь влиянием сил взаимодействия между молекулами и объёмом самих молекул (сильно нагретый газ при небольших давлениях), газ называют идеальным. В противном случае газ называется реальным.

Рабочее тело в тепловой машине получает или отдаёт теплоту, взаимодействуя с более нагретыми или более холодными внешними телами. Такие тела носят название источников теплоты.

Тело, которое отдаёт теплоту рабочему телу и не изменяет свою температуру, называется верхним источником теплоты (ВИТ) или теплоотдатчиком. Тело, которое получает теплоту от рабочего тела и не изменяет свою температуру, называется нижним источником теплоты (НИТ) или теплоприёмником.

Термодинамическая система

Курс лекций по теплотехнике

Введение. Предмет теплотехники. Основные понятия и определения. Термодинамическая система. Параметры состояния. Температура. Давление. Удельный объем. Уравнение состояния. Уравнение Ван-дер-Ваальса .

Введение. Теплотехника – наука, которая изучает методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепловых машин, аппаратов и устройств. Теплота используется во всех областях деятельности человека. Для установления наиболее рациональных способов ее использования, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых агрегатов необходима разработка теоретических основ теплотехники.

Различают два принципиально различных направления использования теплоты – энергетическое и технологическое. При энергетическом использовании, теплота преобразуется в механическую работу, с помощью которой в генераторах создается электрическая энергия, удобная для передачи на расстояние. Теплоту при этом получают сжиганием топлива в котельных установках или непосредственно в двигателях внутреннего сгорания.

При технологическом — теплота используется для направленного изменения свойств различных тел (расплавления, затвердевания, изменения структуры, механических, физических, химических свойств). Такими теоретическими разделами являются техническая термодинамика и основы теории теплообмена, в которых исследуются законы превращения и свойства тепловой энергии и процессы распространения теплоты. Данный курс является общетехнической дисциплиной при подготовке специалистов технической специальности.

Предмет и метод термодинамики. Термодинамикаизучает законы превращения энергии в различных процессах, происходящих в макроскопических системах и сопровождающихся тепловыми эффектами. Макроскопической системой называется любой материальный объект, состоящий из большого числа частиц. Размеры макроскопических систем несоизмеримо больше размеров молекул и атомов.

В зависимости от задач исследования рассматривают техническую или химиче­скую термодинамику, термодинамику биологических систем и т. д. Техническая термодинамика изучает закономерности взаимного превращения тепловой и механической энергии и свой­ства тел, участвующих в этих превращениях. Вместе с теорией теплообмена она является теоретическим фундаментом теплотехники. На ее основе осуществляют расчет и проектирование всех тепловых двигателей, а также всевозможного технологического оборудования.

Рассматривая только макроскопические системы, термодинамика изучает закономерности тепловой формы движения материи, обусловленные наличием огромного числа непрерывно движущихся и взаимодействующих между собой микроструктурных частиц (молекул, атомов, ионов).

Физические свойства макроскопических систем изучаются статистическими термодинамическими методами. Статистический метод основан на использовании теории вероятностей и определенных моделей строения этих систем и представляет собой содержание статистической физики. Термодинамический метод не требует привлечения модельных представлений о структуре вещества и является феноменологическим (т. е. рассматривает «феномены9raquo; — явления в целом).

При этом все основные выводы термодинамики можно получить методом дедукции, используя только два основных эмпирических закона термодинамики.

В дальнейшем, исходя из термодинамического метода мы будем для нагляд­ности использовать молекулярно-кинетические представления о структуре вещества.

Основные понятия и определения. Термодинамика в широком смысле — это наука об энергии и ее свойствах. Название происходит от греческих слов «термос» — тепло и «динамис» — сила.

Она охватывает область физических химических и других явлений, сопровождающихся тепловым эффектом в процессе превращения форм движения материй. Термодинамика основывается на двух экспериментально установленных законах, получивших название первого и второго начал термодинамики.

В зависимости от круга рассматриваемых вопросов различают физическую, химическую и техническую термодинамику.

Технической термодинамикой называется наука, изучающая вопросы взаимного превращения теплоты и работы. Ее основная задача заключается в обосновании теории тепловых двигателей.

Определение: Термодинамиканаука о закономерностях превращения энергии .

В термодинамике широко используется понятие термодинамической системы .

Определение: термодинамической системойназывается совокупность материальных тел, взаимодействующих, как между собой, так и с окружающей средой. Все тела находящиеся за пределами границ рассматриваемой системы называются окружающей средой .

Поскольку одно и то же тело, одно и то же вещество при разных условиях может находиться в разных состояниях, (пример: лед-вода-пар, одно вещество при разной температуре) вводятся, для удобства, характеристики состояния вещества – так называемые параметры состояния .

Перечислим основные параметры состояния вещества:

Температура телопределяет направление возможного самопроизвольного перехода тепла между телами .

В настоящее время в мире существует несколько температурных шкал и единиц измерения температуры. Наиболее распространенная в Европе шкала Цельсия где нулевая температура — температура замерзания воды при атмосферном давлении, а температура кипения воды при атмосферном давлении принята за 100 градусов Цельсия (ºС). В Северной Америке используется шкала Фаренгейта. Для термодинамических расчетов очень удобна абсолютная шкала или шкала Кельвина. За ноль в этой шкале принята температура абсолютного нуля, при этой температуре прекращается всякое тепловое движение в веществе. Численно один градус шкалы Кельвина равен одному градусу шкалы Цельсия.

Температура, выраженная по абсолютной шкале, называется абсолютной температурой .

Соотношение для перехода от градусов Цельсия к градусам Кельвина:

T — температура в Кельвинах;

t — температура в градусах Цельсия.

Давлениепредставляет собой силу, действующею по нормали к поверхности тела и отнесенную к единице площади этой поверхности .

Для измерения давления применяются различные единицы измерения. В стандартной системе измерения СИ единицей служит Паскаль (Па).

Соотношение между единицами:

1 кг/см 2 (атмосфера) = 9.8067 Термодинамические системы 10 4 Па

1мм рт. ст (миллиметр ртутного столба) = 133 Па

1 мм вод. ст. (миллиметр водного столба) = 9.8067 Па

Плотностьотношение массы вещества к объему занимаемому эти веществом .

Термодинамические системы

Удельный объемвеличина обратная плотности, т.е. отношения объема занятого веществом к его массе .

Термодинамические системы

Определение:Если в термодинамической системе меняется хотя бы один из параметров любого входящего в систему тела, то в системе происходит термодинамический процесс .

Основные термодинамические параметры состояния Р, V, Т однородного тела зависят один от другого и взаимно связаны уравнением состояния:

Для идеального газа уравнение состояния записывается в виде:

Термодинамические системы

v — удельный объем

R — газовая постоянная (у каждого газа свое значение)

Если известно уравнение состояния, то для определения состояния простейших систем достаточно знать две независимые переменные из 3-х

Р = f1 (v, т); v = f2 (Р, Т); Т = f3 (v, Р).

Термодинамические процессы часто изображаются на графиках состояния, где по осям отложены параметры состояния. Точки, на плоскости такого графика, соответствуют определенному состоянию системы, линии на графике соответствуют термодинамическим процессам, переводящим систему из одного состояния в другое.

Рассмотрим термодинамическую систему, состоящую из одного тела какого-либо газа в сосуде с поршнем, причем сосуд и поршень в данном случае является внешней средой.

Пусть, для примера, происходит нагрев газа в сосуде, возможны два случая :

1) Если поршень зафиксирован, и объем не меняется, то произойдет повышение давления в сосуде. Такой процесс называется изохорным (v = const), идущий при постоянном объеме;

Термодинамические системы

2) Если поршень свободен, то нагреваемый газ будет расширяться, при постоянном давлении такой процесс называется изобарическим (P = const), идущим при постоянном давлении.

Термодинамические системы

Если, перемещая поршень, изменять объем газа в сосуде то, температура газа тоже будет изменяться, однако можно охлаждая сосуд при сжатии газа и нагревая при расширении можно достичь того, что температура будет постоянной при изменениях объема и давления, такой процесс называется изотермическим (Т = const).

Термодинамические системы

Процесс, при котором отсутствует теплообмен между системой и окружающей средой, называется адиабатным. при этом количество теплоты в системе остается постоянными (Q = const). В реальной жизни адиабатных процессов не существует поскольку полностью изолировать систему от окружающей среды не возможно. Однако, часто происходят процессы, при которых теплообменном с окружающей средой очень мал, например, быстрое сжатие газа в сосуде поршнем, когда тепло не успевает отводиться за счет нагрева поршня и сосуда.

Термодинамические системы

Рис. 1.4 Примерный график адиабатного процесса в P — v координатах.

Определение: Круговой процесс (Цикл)это совокупность процессов, возвращающих систему в первоначальное состояние. Число отдельных процессов может быть любым в цикле.

Понятие кругового процесса является для нас ключевым в термодинамике, поскольку работа АЭС основана на пароводяном цикле, другими словами мы можем рассматривать испарение воды а активной зоне (АЗ), вращение паром ротора турбины, конденсацию пара и поступление воды в АЗ как некий замкнутый термодинамический процесс или цикл.

Определение: Рабочие телоопределенное количество вещества, которое, участвуя в термодинамическом цикле, совершает полезную работу. Рабочим телом в реакторной установке РБМК является вода, которая после испарения в активной зоне в виде пара совершает работу в турбине, вращая ротор.

Определение:Передача энергии в термодинамическом процессе от одного тела к другому, связанная с изменением объема рабочего тела, с перемещением его во внешнем пространстве или с изменением его положения называется работой процесса .

Термодинамическая система

Техническая термодинамика (т/д) рассматривает закономерности взаимного превращения теплоты в работу. Она устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, которые совершаются в тепловых и холодильных машинах, изучает процессы, происходящие в газах и парах, а также свойства этих тел при различных физических условиях.

Термодинамика базируется на двух основных законах (началах) термодинамики:

I закон термодинамики — закон превращения и сохранения энергии;

II закон термодинамики – устанавливает условия протекания и направленность макроскопических процессов в системах, состоящих из большого количества частиц.

Техническая т/д, применяя основные законы к процессам превращения теплоты в механическую работу и обратно, дает возможность разрабатывать теории тепловых двигателей, исследовать процессы, протекающие в них и т.п.

Объектом исследования являетсятермодинамическая система, которой могут быть группа тел, тело или часть тела. То что находится вне системы называется окружающей средой. Т/д система это совокупность макроскопических тел, обменивающиеся энергией друг с другом и окружающей средой. Например: т/д система – газ, находящейся в цилиндре с поршнем, а окружающая среда – цилиндр, поршень, воздух, стены помещения.

Изолированная система — т/д система не взаимодействующая с окружающей средой.

Адиабатная (теплоизолированная) система – система имеет адиабатную оболочку, которая исключает обмен теплотой (теплообмен) с окружающей средой.

Однородная система – система, имеющая во всех своих частях одинаковый состав и физические свойства.

Гомогенная система – однородная система по составу и физическому строению, внутри которой нет поверхностей раздела (лед, вода, газы).

Гетерогенная система – система, состоящая из нескольких гомогенных частей (фаз) с различными физическими свойствами, отделенных одна от другой видимыми поверхностями раздела (лед и вода, вода и пар).
В тепловых машинах (двигателях) механическая работа совершается с помощью рабочих тел – газ, пар.

Свойства каждой системы характе­ризуются рядом величин, которые при­нято называть термодинамиче­скими параметрами. Рассмот­рим некоторые из них, используя при этом известные из курса физики молекулярно-кинетические представления об идеальном газе как о совокупности моле­кул, которые имеют исчезающе малые размеры, находятся в беспорядочном тепловом движении и взаимодействуют друг с другом лишь при соударениях.

Давление обусловлено взаимо­действием молекул рабочего тела с по­верхностью и численно равно силе, дей­ствующей на единицу площади повер­хности тела по нормали к последней. В соответствии с молекулярно-кинетической теорией давление газа определяется соотношением

Где n — число молекул в единице объема;

т — масса молекулы; с 2 — средняя квадратическая скорость поступательного движения молекул.

В Международной системе единиц (СИ) давление выражается в паскалях (1 Па = 1 Н/м 2 ). Поскольку эта единица мала, удобнее использовать 1 кПа = 1000 Па и 1 МПа = 10 6 Па.

Давление измеряется при помощи манометров, барометров и вакуумметров.

Жидкостные и пружинные манометры измеряют избыточное давление, пред­ставляющее собой разность между полным или абсолютным давлением р изме­ряемой среды и атмосферным давлением

Приборы для измерения давлений ниже атмосферного называются вакуум­метрами; их показания дают значение разрежения (или вакуума):

Термодинамические системы,

т. е. избыток атмосферного давления над абсолютным.

Следует отметить, что параметром состояния является абсолютное давление. Именно оно входит в термодинамические уравнения.

Температуройназывается физическая величина. характеризующая степень нагретости тела. Понятие о температуре вытекает из следующего утвер­ждения: если две системы находятся в тепловом контакте, то в случае неравенства их температур они будут обмениваться теплотой друг с другом, если же их температуры равны, то теплообмена не будет.

С точки зрения молекулярно-кинетических представлений температура есть мера интенсивности теплового движения молекул. Ее численное значение связано с величиной средней кинетической энергии молекул вещества:

где k — постоянная Больцмана, равная 1,380662•10? 23 Дж/К. Температура T, определенная таким образом, называется абсолютной .

В системе СИ единицей температуры является кельвин (К); на практике широко применяется градус Цельсия (°С). Соотношение между абсолютной Т и стоградусной I температурами имеет вид

Термодинамические системы .

В промышленных и лабораторных условиях температуру измеряют с помощью жидкостных термометров, пирометров, термопар и других приборов.

Удельный объем vэто объем единицы массы вещества. Если однородное тело массой М занимает объем v, то по определению

В системе СИ единица удельного объема 1 м 3 /кг. Между удельным объемом вещества и его плотность существует очевидное соотношение:

Термодинамические системы

Для сравнения величин, характеризующих системы в одинаковых состояниях вводится понятие «нормальные физические условия»:

p = 760 мм рт.ст. = 101,325 кПа; T = 273,15 K.

В разных отраслях техники и разных странах вводят свои, несколько отличные от приведенных «нормальные условия», например, «технические9raquo; (p = 735,6 мм рт.ст. = 98 кПа, t = 15?C) или нормальные условия для оценки производительности компрессоров (p = 101,325 кПа, t = 20?С ) и т. д.

Если все термодинамические параметры постоянны во времени и одинаковы во всех точках системы, то такое состояние системы называется равно­весным .

Если между различными точками в системе существуют разности темпера­тур, давлений и других параметров, то она является неравновесной. В такой системе под действием градиентов параметров возникают потоки теплоты, вещества и другие, стремящиеся вернуть ее в состояние равновесия. Опыт показывает, что изолированная система с течением времени всегда приходит в со­стояние равновесия и никогда самопроизвольно выйти из него не может. В классической термодинамике рассматриваются только равновесные системы.

Уравнение состояния. Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, которая называется уравнением состояния. Опыт показывает, что удельный объем, температура и давление простейших систем, которыми являются газы, пары или жидкости, связаны термическим уравнением состояние вида:

Термодинамические системы .

Уравнению состояния можно придать другую форму:

Термодинамические системы

Термодинамические системы

Термодинамические системы

Эти уравнения показывают, что из трех основных параметров, определяющих состояние системы, независимыми являются два любых.

Для решения задач методами термодинамики совершенно необходимо знать уравнение состояния. Однако оно не может быть получено в рамках термодинамики и должно быть найдено либо экспериментально, либо методами статистической физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *