Генеральная совокупность и выборка

Генеральная совокупность и выборка

ВЫБОРКА И ЕЕ РАСПРЕДЕЛЕНИЕ

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Математическая статистика — это раздел прикладной математики, в котором рассматриваются методы отыскания законов и характеристик случайных величин по результатам наблюдений и экспериментов .

Основные задачи математической статистики.

1. Создание методов сбора и группировки обрабатываемого статистического материала, полученного в результате наблюдений за случайными процессами.

2. Разработка методов анализа полученных статистических данных.

3. Получение выводов по данным наблюдений.

Анализ статистических данных включает оценку вероятностей события, функции распределения вероятностей или плотности вероятностей, оценку параметров известного распределения, оценку связей между случайными величинами.

Математическая статистика опирается на теорию вероятностей и в свою очередь служит основой для разработки методов обработки и анализа статистических результатов в конкретных областях человеческой деятельности.

Основными понятиями математической статистики являются генеральная совокупность и выборка.

Генеральная совокупность – это совокупность всех мысленно возможных объектов данного вида, над которыми проводятся наблюдения с целью получения конкретных значений определенной случайной величины.

Генеральная совокупность может быть конечной или бесконечной в зависимости от того, конечна или бесконечна совокупность составляющих ее объектов.

Не следует смешивать понятие генеральной совокупности с реально существующими совокупностями. Например, на склад поступила продукция некоторого цеха за месяц, что является реально существующей совокупностью, которую нельзя назвать генеральной, поскольку выпуск продукции можно мысленно продолжить сколь угодно долго.

Выборкой (выборочной совокупностью) называется совокупность случайно отобранных объектов из генеральной совокупности.

Выборка должна быть репрезентативной (представительной). то есть ее объекты должны достаточно хорошо отражать свойства генеральной совокупности.

Выборка может быть повторной. при которой отобранный объект (перед отбором следующего) возвращается в генеральную совокупность, и бесповторной. при которой отобранный объект не возвращается в генеральную совокупность.

Применяют различные способы получения выборки.

1) Простой отбор – случайное извлечение объектов из генеральной совокупности с возвратом или без возврата.

2) Типический отбор, когда объекты отбираются не из всей генеральной совокупности, а из ее «типической9raquo; части.

3) Серийный отбор – объекты отбираются из генеральной совокупности не по одному, а сериями.

4) Механический отбор — генеральная совокупность «механически9raquo; делится на столько частей, сколько объектов должно войти в выборку и из каждой части выбирается один объект.

Число объектов генеральной совокупности и число объектов выборки называют объемами генеральной и выборочной совокупностей соответственно. При этом предполагают, что (значительно больше).

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Генеральная совокупность и выборка

Совокупность однородных объектов часто исследуют относительно какого-либо признака, характеризующего их, измеренного количественно либо качественно.

К примеру, если имеется партия деталей, то количественным признаком может быть размер детали по ГОСТу, а качественным — стандартность детали.

В случае необходимости их проверки на соответствие стандартам иногда прибегают к сплошному обследованию, но на практике это применяется крайне редко. К примеру, если генеральная совокупность содержит огромное количество изучаемых объектов, то практически невозможно проводить сплошное обследование. В таком случае из всей совокупности отбирают определенное число объектов (элементов) и их исследуют. Таким образом, имеется генеральная и выборочная совокупность.

Генеральной называют совокупность всех объектов, которые подвергаются обследованию или изучению. Генеральная совокупность, как правило, содержит в себе конечное число элементов, но если оно слишком велико, то с целью упрощения математических вычислений допускается, что вся совокупность состоит из бесчисленного числа объектов.

Выборкой или выборочной совокупностью называется часть отобранных элементов из всей совокупности. Выборка может быть повторной либо бесповторной. В первом случае её возвращают в генеральную совокупность, во втором – нет. В практической деятельности чаще используют бесповторный случайный отбор.

Генеральная совокупность и выборка должны быть связаны между собой репрезентативностью. Говоря по другому, для того, чтобы по характеристикам выборочной совокупности можно было уверенно определять признаки всей совокупности, надо, чтобы элементы выборки максимально точно их представляли. Иными словами, выборка должна быть представительной (репрезентативной).

Выборка будет более или менее репрезентативной, если она производится случайно из очень большого числа всей совокупности. Это можно утверждать на основе так называемого закона больших чисел. При этом все элементы имеют равную вероятность попасть в выборку.

Имеются различные варианты отбора. Все эти способы в принципе можно разделить на два варианта:

  • Вариант 1. Отбираются элементы, когда генеральная совокупность не делится на части. К этому варианту можно отнести простой случайный повторный и бесповторный отборы.
  • Вариант 2. Генеральная совокупность разделяется на части и производится отбор элементов. Сюда можно отнести типический, механический и серийный отборы.

Простой случайный — отбор, при котором элементы извлекаются по одному из всей совокупности случайным образом.

Типический – это отбор, при котором элементы отбираются не из всей совокупности, а из всех её «типических9raquo; частей.

Механический — это такой отбор, когда всю совокупность разделяют на количество групп, равное числу элементов, которое должно быть в выборке, и, соответственно, из каждой группы выбирается один элемент. К примеру, если надо отобрать 25% деталей, изготовленных станком, то выбирают каждую четвёртую деталь, а если требуется отобрать 4% деталей, то выбирают каждую двадцать пятую деталь и так далее. При этом необходимо сказать, что иногда механический отбор может не обеспечивать достаточной репрезентативности выборки.

Серийный — это такой отбор, при котором элементы отбирают из всей совокупности «сериями9raquo;, подвергаемыми сплошному исследованию, а не по одному. К примеру, когда детали изготавливаются большим числом станков-автоматов, то сплошное обследование проводится только в отношении продукции нескольких станков. Серийный отбор используют, если исследуемый признак имеет незначительную вариативность в разных сериях.

С целью уменьшения погрешности применяют математико-статистические методы оценки генеральной совокупности с помощью выборочной. Причем выборочный контроль может быть как одноступенчатым, так и многоступенчатым, что повышает надежность обследования.

Генеральная совокупность и выборка

13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

Генеральная совокупность и выборка

Как выглядеть моложе? 9 хитростей, о которых знают дерматологи Хотите иметь идеальную кожу? Существуют многие секреты, которые позволят вам забыть, для чего работают дерматологи и пластические хирурги.

Генеральная совокупность и выборка

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Генеральная совокупность и выборка

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Генеральная совокупность и выборка

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Генеральная совокупность и выборка

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Генеральная совокупность и выборка

Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования.

Если изучается какой-нибудь вид диких животных или растений, то генеральной совокупностью будут все особи этого вида. В данном случае объем генеральной совокупности будет очень большой и при расчетах он принимается за бесконечно большую величину.

Если изучается действие какого-нибудь агента на растения и животных определенной категории, то генеральной совокупностью будут все растения и животные той категории (вида, пола, возраста, хозяйственного назначения), к которой относились подопытные объекты. Это уже не очень большое количество особей, но еще недоступное для сплошного изучения.

Не всегда объем генеральной совокупности недоступен для сплошного исследования. Иногда изучаются небольшие совокупности, например, определяется средний удой или средний настриг шерсти у группы животных, закрепленных за определенным работником. В таких случаях генеральной совокупностью будет совсем небольшое количество особей, которые все исследуются. Небольшая генеральная совокупность встречается также при исследовании растений или животных, имеющихся в какой-нибудь коллекции, с целью характеристики определенной группы в данной коллекции.

Характеристики групповых свойств ( Генеральная совокупность и выборка и т. д.), относящиеся ко всей генеральной совокупности, называются генеральными параметрами.

Выборка – группа объектов, отличающихся тремя особенностями:

1 это часть генеральной совокупности;

2 отобранная в случайном порядке, определенным образом;

3 исследуемая для характеристики всей генеральной совокупности.

Для того чтобы по выборке можно было получить достаточно точную характеристику всей генеральной совокупности, необходимо организовать правильный отбор объектов из генеральной совокупности.

Теорией и практикой разработано несколько систем отбора особей в выборку. В основу всех этих систем положено стремление обеспечить максимальную возможность выбора любого объекта из генеральной совокупности. Тенденциозность, предвзятость при отборе объектов для выборочного исследования препятствуют получению правильных общих выводов, делают результаты выборочного исследования непоказательными для всей генеральной совокупности, т. е. нерепрезентативными.

Для получения правильной, неискаженной характеристики всей генеральной совокупности необходимо стремиться обеспечить возможность отбора в выборку любого объекта из любой части генеральной совокупности. Это основное требование должно выполняться тем строже, чем более изменчив изучаемый признак. Вполне понятно, что при разнообразии, приближающемся к нулю, например в случае изучения цвета волос или перьев некоторых видов, любой способ отбора выборки даст репрезентативные результаты.

В различных исследованиях применяются следующие способы отбора объектов в выборку.

4 Случайный повторный отбор, при котором объекты изучения отбираются из генеральной совокупности без предварительного учета развития у них изучаемого признака, т. е. в случайном (для данного признака) порядке; после отбора каждый объект изучается и затем возвращается в свою генеральную совокупность, так что любой объект может попасть повторно в выборку. Такой способ отбора равносилен отбору из бесконечно большой генеральной совокупности, для которого разработаны основные показатели взаимоотношений между выборочными и генеральными величинами.

5 Случайный бесповторный отбор, при котором объекты, отобранные, как и при предыдущем способе, случайно, не возвращаются в генеральную совокупность и не могут повторно попасть в выборку. Это наиболее распространенный способ организации выборки; он равносилен отбору из большой, но ограниченной генеральной совокупности, что учитывается при определении генеральных показателей по выборочным.

6 Механический отбор, при котором производится отбор объектов из отдельных частей генеральной совокупности, причем эти части предварительно намечаются механически по квадратам опытного поля, по случайным группам животных, взятых из разных ареалов популяции и т. д. Обычно намечается столько таких частей, сколько предполагается взять объектов для изучения, поэтому число частей бывает равно численности выборки. Механический отбор иногда осуществляется выбором для изучения особей через определенное число, например при пропускании животных через раскол и отборе каждого десятого, сотого и т. д. или при взятии укоса через каждые 100 или 200 м, или отборе одного объекта через каждые встретившиеся 10, 100 и т. д. экземпляров при исследовании всей популяции.

7 Типический пропорциональный отбор предполагает необходимость предварительного изучения генеральной совокупности по общебиологическим или хозяйственным особенностям. На основе такого изучения вся генеральная совокупность разбивается на части по типу растительных сообществ, в которых обитает вид, по рельефу местности, по виду хозяина паразита и т. д. Из каждой такой части для изучения выбирается в случайном порядке число экземпляров, пропорциональное населенности отдельных частей. Например, при изучении определенной породы рыб берутся уловы из разных водоемов и из каждого улова берется число экземпляров, пропорциональное степени заселенности или объему водоема. При определении среднего процента жира за лактацию коровы пробы молока для исследования берутся в контрольные дни каждого месяца пропорционально удою за эти дни. На основе такой выборки дается характеристика жирномолочности удоя за всю лактацию, который в данном случае является генеральной совокупностью, разбитой на типические части – месячные удои. Типический пропорциональный отбор производится также при определении качества шерсти у группы овец по пробам, взятым из каждого руна пропорционально весу рун.

8 Серийный (гнездовой) отбор, при котором генеральная совокупность разбивается на части – серии, некоторые из них исследуются целиком. Применяется этот способ с успехом в тех случаях, когда исследуемые объекты достаточно равномерно распределены в определенном объеме или на определенной территории. Например, при исследовании зараженности воздуха или воды микроорганизмами берут пробы, которые подвергаются сплошному исследованию. В некоторых случаях гнездовым способом могут быть обследованы также сельскохозяйственные объекты. При изучении выходов мяса и других продуктов переработки мясной породы скота в выборку можно взять всех животных этой породы, поступивших на два-три мясокомбината. При изучении величины яйца в колхозном птицеводстве можно в нескольких колхозах провести изучение этого признака у всего поголовья кур.

Характеристики групповых свойств (&#&56;, s и т. д.), полученные для выборки, называются выборочными показателями.

Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки.

Все выборочные данные и сводные показатели имеют значение в качестве первичных фактов, вскрытых исследованием и подлежащих тщательному рассмотрению, анализу и сопоставлению с результатами других работ. Но этим не ограничивается процесс извлечения информации, заложенный в первичных материалах исследования.

То обстоятельство, что объекты отбирались в выборку специальными приемами и в достаточном количестве, делает результаты изучения выборки показательными не только для самой выборки, но также и для всей генеральной совокупности, из которой взята эта выборка.

Выборка при определенных условиях становится более или менее точным отражением всей генеральной совокупности. Это свойство выборки называется репрезентативностью, что означает представительность с определенной точностью и надежностью.

Как и всякое свойство, репрезентативность выборочных данных может быть выражена в достаточной или в недостаточной степени. В первом случае в выборке получаются достоверные оценки генеральных параметров, во втором – недостоверные. Важно помнить, что получение недостоверных оценок не умаляет значения выборочных показателей для характеристики самой выборки. Получение же достоверных оценок расширяет область применения достижений, полученных при выборочном исследовании.

Генеральная совокупность и выборка
Главная | О нас | Обратная связь

Генеральная совокупность и выборка

Исследование обычно начинается с некоторого предположения, требующего проверки с привлечением фактов. Это предположение — гипотеза — формулируется в отношении связи явлений или свойств в некоторой совокупности объектов. Для проверки подобных предположений на фактах необходимо измерить соответствующие свойства у их носителей. Но невозможно измерить, например, тревожность у всех подростков. Поэтому при проведений исследования ограничиваются лишь относительно небольшой группой представителей соответствующих совокупностей людей.

Генеральная совокупность — это все множество объектов, в отношении которого формулируется исследовательская гипотеза. Теоретически считается, что объем генеральной совокупности не ограничен. Практически же объем генеральной совокупности всегда ограничен и может быть различным в зависимости от предмета наблюдения и той задачи, которую предстоит решать психологу. Обычно генеральная совокупность включает в себя очень большое число объектов- студентов вуза, школьников, работников предприятия, пенсионеров и т.д. Сплошное исследование генеральных совокупностей чрезвычайно затруднительно, поэтому, как правило, изучается небольшая часть генеральной совокупности, называемая выборочной совокупностью, или выборкой.

Выборка — это ограниченная по численности группа объектов (в психологии — испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выборке свойств генеральной совокупности называется выборочным исследованием. Практически все психологические исследования являются выборочными, а их выводы распространяются на генеральные совокупности.

К выборке применяется ряд обязательных требований, определенных, прежде всего, целями и задачами исследования. Она должна быть такой, чтобы обосновалась генерализация выводов выборочного исследования — обобщение, распространение их на генеральную совокупность.

Выборка должна удовлетворять следующим условиям:

1. Это группа объектов, доступная для изучения. Объем выборки опре­деляется задачами и возможностями наблюдения и эксперимента.

2. Это часть заранее намеченной генеральной совокупности.

3. Это группа, отобранная случайным образом так, чтобы любой объект генеральной совокупности имел одинаковую вероятность попасть в выборку.

Основные критерии обоснованности выводов исследования — это репрезентативность выборки и статистическая достоверность (эмпири­ческих) результатов.

Репрезентативность — иными словами, ее представительность — это способность характеризовать соответствующую генеральную совокупность с определенной точностью и достаточной надежностью. Если выборка испытуемых по своим характеристикам репрезентативна генеральной совокупности, то есть основания, полученные при ее изучении результаты распространить на всю генеральную совокупность.

В идеале репрезентативная выборка должна быть такой, чтобы каж­дая из основных изучаемых психологом характеристик, черт, особенностей личности и т. п. представлялась в ней пропорционально этим же особенностям в генеральной совокупности.

Ошибки репрезентативности возникают в двух случаях:

1. Малая выборка, характеризующая генеральную совокупность.

2. Несовпадение свойств (параметров) выборки с параметрами генеральной совокупности.

Статистическая достоверность. или статистическая значимость, результатов исследования определяется при помощи методов статистического вывода. Эти методы будут подробнее рассмотрены в теме «Проверка гипотез». Отметим, что они предъявляют определенные требования к численности, или объему выборки.

Рекомендации по определению требуемого объема выборки:

• Наибольший объем выборки необходим при разработке диагности­ческой методики — от 200 до 1000-2500 человек.

• Если необходимо сравнить 2 выборки, их общая численность должна быть не менее 50 человек; численность сравниваемых выборок должна быть приблизительно одинаковой.

• Если изучается взаимосвязь между какими-либо свойствами, то объем выборки должен быть не меньше 30-35 человек.

• Чем больше изменчивость изучаемого свойства, тем больше должен быть объем выборки. Поэтому изменчивость можно уменьшить, увеличивая однородность выборки, например по полу, возрасту и т.д. При этом, естественно, уменьшаются возможности генерализации выводов.

Зависимые и независимые выборки. Обычна ситуация исследования, когда интересующее исследователя свойство изучается на двух или более выборках с целью их дальнейшего сравнения. Эти выборки могут находиться в различных соотношениях — в зависимости от процедуры их организации. Независимые выборки характеризуются тем, что вероятность отбора любого испытуемого одной выборки не зависит от отбора любого из испытуемых другой выборки. Напротив, зависимые выборки характеризуются тем, что каждому испытуемому одной выборки поставлен в соответствие по определенному критерию испытуемый из другой выборки.

Наиболее типичным примером независимой выборки является, например, сравнение мужчин и женщин по уровню интеллекта.

http://www.hi-edu.ru/e-books/xbook096/01/index.html?part-011.htm – очень полезный сайт!

Выборочный метод исследования является основным статистическим методом. Это естественно, так как объем изучаемых объектов как правило бесконечен (и даже, если конечен, то весьма затруднительно перебрать все объекты, приходится довольствоваться лишь их частью, выборкой).

Генеральная и выборочная совокупности

Генеральной совокупностью называется совокупность всех исследуемых в данном эксперименте элементов.

Выборочной совокупностью (или выборкой) называется конечная совокупность объектов, случайно отобранных из генеральной совокупности.

Объемом совокупности (выборочной или генеральной) называется число объектов этой совокупности.

Пример генеральной и выборочной совокупностей

Допустим, исследуется психологическая предрасположенность человека к делению данного отрезка в отношении золотого сечения. Так как происхождение самого понятия золотого сечения продиктовано антропометрией человеческого тела, то понятно, что в данном случае генеральной совокупностью является любое антропогенное существо достигшее физической зрелости и приобретшее окончательные пропорции, то есть — вся взрослая часть человечества. Объем этой совокупности практически бесконечен.

Если же эта предрасположенность исследуется исключительно в художественной среде, то генеральная совокупность — это люди, имеющие непосредственное отношение к дизайну: художники, архитекторы, дизайнеры. Таких людей тоже очень много, и можно считать, что объем генеральной совокупности в данном случае тоже бесконечен.

И в том, и в другом случае для исследования мы вынуждены ограничиться разумными объемами выборок, выбирая в качестве представителей той и другой совокупностей студентов технических специальностей (как людей, далеких от художественного мира) или студентов специальности дизайн (как людей, имеющих непосредственное отношение к миру художественных образов).

Репрезентативность

Основной проблемой выборочного метода является вопрос о том, насколько точно объекты, отобранные из генеральной совокупности для исследования, представляют изучаемые характеристики генеральной совокупности, то есть — вопрос о репрезентативности выборки.

Итак, выборка называется репрезентативной (представительной), если она достаточно точно представляет количественные соотношения генеральной совокупности.

Разумеется, трудно сказать, что именно скрывается за расплывчатой формулировкой достаточно точно. Вопросы репрезентативности вообще являются наиболее спорными в любом экспериментальном исследовании. Имеется масса ставших уже классическими примеров, когда недостаточная представительность выборки приводила экспериментаторов к абсурдным результатам.

Как правило, вопросы репрезентативности решаются при помощи экспертной оценки, когда научное сообщество принимает точку зрения группы авторитетных специалистов по поводу корректности проведенного исследования.

Пример репрезентативности

Вернемся к примеру с делением отрезка. Вопросы репрезентативности выборок лежат здесь в самой основе исследования: мы ни в коем случае не должны смешивать группы испытуемых по признаку принадлежности их к художественной среде.

Статистическое распределение наблюдаемого признака

Частота наблюдаемого значения

Пусть в результате испытания в выборке объема Генеральная совокупность и выборканаблюдаемый признак Генеральная совокупность и выборкапринял значения Генеральная совокупность и выборка, Генеральная совокупность и выборка, … Генеральная совокупность и выборка, причем значение Генеральная совокупность и выборканаблюдалось Генеральная совокупность и выборкараз, значение Генеральная совокупность и выборкаГенеральная совокупность и выборкараз, и т. д. значение Генеральная совокупность и выборканаблюдалось Генеральная совокупность и выборкараз. Тогда частотой наблюдаемого значения Генеральная совокупность и выборканазывается число Генеральная совокупность и выборка, значения Генеральная совокупность и выборка— число Генеральная совокупность и выборкаи т. д.

Относительная частота наблюдаемого значения

Относительной частотой Генеральная совокупность и выборканаблюдаемого значения Генеральная совокупность и выборкапризнака Генеральная совокупность и выборканазывается отношение частоты Генеральная совокупность и выборкак объему Генеральная совокупность и выборкавыборки:

Генеральная совокупность и выборка

Понятно, что сумма частот наблюдаемого признака должна давать объем выборки

Генеральная совокупность и выборка

а сумма относительных частот должна давать единицу:

Генеральная совокупность и выборка

Эти соображения можно использовать для контроля при составлении статистических таблиц. Если равенства не соблюдаются, то при протоколировании результатов эксперимента была допущена ошибка.

Статистическое распределение наблюдаемого значения

Статистическим распределением наблюдаемого признака называется соответствие между наблюдаемыми значениями признака и отвечающими им частотами (или относительными частотами).

Как правило, статистическое распределение записывается в виде двухстрочной таблицы, в которой в первой строке указываются наблюдаемые значения признака, а во второй — соответствующие им частоты (или относительные частоты):

Генеральная совокупность и выборка

Генеральная совокупность и выборка

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *