Газообразное состояние вещества

Газообразное состояние вещества

6. Переход вещества из одного агрегатного состояния в другое…………………………………………. 6,7

Агрегатные состояния вещества — это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества.Агрегатное состояние вещества зависит от физических условий, в которых оно находится, главным образом от температуры и от давления. Выделяют три основных агрегатных состояния: твёрдое тело, жидкость

и газ. Четвёртым агрегатным состоянием вещества считают плазму.Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе -Эйнштейна.

Газообразное состояние вещества

-состояние вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия; кинетическая энергия теплового движения его частиц (молекул, атомов) значительно превосходит потенциальную энергию взаимодействий между ними, поэтому частицы движутся почти свободно, целиком заполняя сосуд, в котором находятся, и принимают его форму. Любое вещество можно перевести в газообразное, изменяя

давление и температуру(т.е. газ не имеет форму,но имеет объём).

В газообразном состоянии всё вполне прозрачно — чем дальше частицы газа находятся друг от друга, тем меньше их взаимное отталкивание и тем меньше общая потенциальная энергия газа. Поэтому газу энергетически выгодно равномерно заполнить весь выделенный ему объём. Этим же объясняется и низкое давление на стенки разреженных газов — ведь межмолекулярные расстояния там велики, и сила отталкивания, передающаяся на стенки в виде давления газа,мала.Итак, Д.Г.зависит:
Во-первых. давление зависит от степени сжатия газа, т. е. от того, сколько молекул газа находится в данном объеме. Например, нагнетая в автомобильную шину все больше воздуха или сжимая (уменьшая объем) закрытую камеру, мы заставляем газ все сильнее давить_на_стенки_камеры.Во-вторых. давление зависит от температуры газа. Известно, например, что мяч становится более упругим, если его подержать вблизи нагретой печи.
Обычно изменение давления вызывается обеими причинами сразу: и изменением объема, и изменением температуры. Но можно осуществить процесс так, что при изменении объема температура будет меняться ничтожно мало или при изменении температуры объем практически останется неизменным.Состояние массы газа полностью определено, если известны его давление, температура и объем. Эти величины называют параметрами состояния газа. Уравнение, связывающее параметры состояния, называют уравнением состояния. Для произвольной массы газа состояние газа описывается уравнением Менделеева—Клапейрона. pV = mRT/M, где р — давление, V — объем, m — масса, М — молярная масса, R — универсальная газовая постоянная. Физический смысл универсальной газовой постоянной в том, что она показывает, какую работу совершает один моль идеального газа при изобарном расширении при нагревании на 1 К (R = 8,31 ДжДмоль • К)).( Уравнение Менделеева—Клапейрона показывает, что возможно одновременное изменение 3-х параметров, характеризующих состояние идеального газа. Однако многие процессы в газах, происходящие в природе и осуществляемые в технике, можно рассматривать приближенно как процессы, в которых изменяются лишь два параметра. Особую роль в физике и технике играют 3 процесса: изотермический, изохорный и изобарный.
2.1 Изопроцесс — процесс, происходящий с данной массой газа при одном постоянном параметре — температуре, давлении или объеме. Из уравнения состояния как частные случаи получаются законы для изопроцессов.

Изотермический процесс — процесс, протекающий при постоянной температуре. Т = const. Он описывается законом Бойля—Мариотта. pV = const.

Изохорный процесс –процесс, протекающий при постоянном объеме. Для него справедлив закон Шарля. V = const, p/T = const.

Изобарный процесс — процесс, протекающий при постоянном давлении. Уравнение этого процесса имеет вид V/T = const при р = const и называется законом Гей-Люссака. Все процессы можно изобразить графически.

2.2Особенности газов под высоким давлением: Высокое давление газа означает большую силу взаимного отталкивания частиц газа, а следовательно, весьма высокую концентрацию его частиц. Поскольку сила отталкивания при этом велика, велико и давление на стенки сосуда, в котором находится газ, велика и потенциальная энергия этого газа, которая сразу проявится в виде его взрывного расширения, лишь стоит ограничивающим стенкам утратить необходимую прочность.Так как расстояния между частицами газа при высоком давлении относительно невелики, то силы отталкивания существенны в любом месте пространства между ними.

2.3Особенности газов при нагревании: При нагревании газа увеличивается скорость теплового движения его частиц, а значит и кинетическая составляющая его давления. Поэтому при росте температуры поведение любого газа начинает всё более походить на поведение разреженных газов, хотя абсолютное давление при этом растёт за счёт возрастания кинетической составляющей.Когда температура становится достаточно высокой, происходит тепловая ионизация частиц газа, они превращаются в ионы, а газ переходит в фазу плазмы.

ü сжимаемость -отношение удельного объёма газа к удельному объёму идеального газа с такой же молярной массой.

ü Теплоёмкость газа сильно зависит от характера процесса, который с ним протекает

ü Вязкость. В отличие от жидкостей, кинематическая вязкость газов с ростом температуры растёт, хотя для динамической вязкости зависимость менее выражена. Также вязкость обратно пропорциональна давлению.

ü Проводимость .Газы — очень плохие проводники, но в ионизированном состоянии газ способен проводить электрический ток. Проводимость газа зависит от напряжения нелинейно, поскольку степень ионизации изменяется по сложному закону. Основных способов ионизации газа два: термическая ионизация и ионизация электрическим ударом. Кроме того, существует так называемый самостоятельный электрический разряд (пример — молния).

ü Термическая ионизация — приданиеатомам достаточной кинетической энергии для отрываэлектрона от ядра и последующей ионизации вследствие повышения температуры газа и тепловое движение атомов газа, приводящее к столкновениям и превращением их в кинетическую энергию.

2.4. Газообразное состояние вещества

К основному газовому закону относится уравнение состояния газа Менделеева-Клайперона pV=nRT. где n – число молей газа, R – постоянная, равная 8,314 Дж/(Кмоль) или (лкПа)/(Кмоль). Газ, который подчиняется этому закону, называется идеальным.

Закон Авогадро гласит: в равных объемах всех газов при одинаковых давлении и температуре содержится одинаковое число молекул. В одном моле содержится 6,02210 23 молекул. При стандартных условиях моль газа занимает объем 22,4 л.

Предполагается, что существование идеального газа возможно при следующих условиях: газ состоит из большого числа молекул, находящихся в непрерывном движении; молекулы газа не притягиваются друг к другу; время столкновения молекул друг с другом очень мало по сравнению со временем между столкновениями; средняя кинетическая энергия газа пропорциональна абсолютной температуре.

Вследствие непрерывного движения молекулы газа стремятся распространиться по всему объему. Такое распространение называется диффузией, скорость этого процесса обратно пропорциональна корню квадратному из плотности газа.

Поведение реальных газов отклоняется от законов, определенных для идеальных газов. Причиной таких отклонений является межмолекулярное взаимодействие, а также то, что каждая молекула имеет свой собственный объем. Ван-дер-Ваальсом было предложено уравнение состояния газа, учитывающее эти факторы: (p+an2/V2)(Vnb) =nRT .

Здесь постоянная а учитывает межмолекулярные взаимодействия, и ее значение растет с увеличением энергии ван-дер-ваальсовского взаимодействия, а постоянная в учитывает объем молекул, и ее значение увеличивается с увеличением размера молекул.

2.5. Жидкое состояние вещества

При повышении давления расстояние между частицами газа уменьшается и все больше проявляются силы притяжения молекул. При некотором давлении, зависящем от природы вещества и температуры, происходит превращение газа в жидкость – конденсация газа.

Согласно молекулярно-кинетической теории расстояния между частицами жидкости намного меньше, чем в газах, поэтому между ними возникают ван-дер-ваальсовы взаимодействия: дисперсионные, диполь-дипольные и индукционные. Эти взаимодействия удерживают молекулы друг около друга и приводят к их некоторому упорядочиванию или объединению частиц. Небольшие группы частиц, объединенных теми или иными силами, получили название кластеров. В случае одинаковых частиц кластеры в жидкости называются ассоциатами.

Степень упорядоченности повышается с увеличением полярности молекул, так как при этом растут ван-дер-ваальсовы силы. Особенно значительно упорядочение при образовании водородных связей между молекулами. Однако даже водородные связи, и тем более ван-дер-ваальсовы силы, относительно непрочны, поэтому молекулы в жидком состоянии находятся в непрерывном движении, получившем название броуновского движения.

Вследствие непрерывного движения отдельные молекулы могут вырываться из жидкости и переходить в газообразное состояние. Этот процесс называется испарением жидкости. Склонность жидкости к испарению называется летучестью. Вследствие испарения растет парциальное давление пара данной жидкости в газовой фазе над жидкостью, т.е. конденсация пара. При некотором парциальном давлении скорости испарения и конденсации пара становятся равными, и такое давление называется давлением насыщенных паров жидкости.

При парциальном давлении насыщенных паров жидкости, равном атмосферному давлению, образуются пузырьки газа жидкости, и начинается кипение. Температура, при которой достигается это состояние, называется температурой кипения жидкости.

Жидкости обладают текучестью. Сопротивление жидкости текучести носит название вязкости. Вязкость растет с увеличением энергии взаимодействия частиц и зависит от структуры молекул. С увеличением температуры вязкость уменьшается.

Силы молекулярного взаимодействия молекул, находящихся на поверхности, не уравновешены, поэтому результирующая сила направлена в глубь жидкости. Под действием этой силы жидкость стремится к сокращению своей поверхности. Наименьшую поверхность при одинаковом объеме имеет сфера, поэтому капля жидкости принимает форму сферы.

Для образования новой поверхности требуется дополнительная энергия, которая получила название поверхностного натяжения , Дж/м 2 .

Газообразное состояние — вещество

Газообразное состояние вещества характеризуется главным образом весьма малыми молекулярными силами сцепления, вследствие чего газ стремится занять максимальный объем.  [1]

Газообразное состояние вещества наиболее доступно для понимания; жидкое состояние уже значительно менее понятно, а твердое вещество может, по-видимому, считаться наиболее сложным. Порошки часто называют четвертым состоянием вещества. Кроме того, явления на границах раздела твердое тело — твердое тело и твердое тело — газ [1-3] относятся к наименее изученным аспектам твердого состояния.  [2]

Газообразное состояние вещества в основном характеризуется весьма малыми межмолекулярными силами сцепления.  [3]

Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества — атомы или молекулы — большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают заметное действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы на общее поведение газа при тех или иных изменениях его состояния.  [4]

Газообразное состояние вещества очень распространено. Газы участвуют в важнейших химических реакциях, являются теплоносителями и источниками энергии. Он распространил закон сохранения энергии на тепловые явления, полагая, что частицы газов находятся в непрерывном хаотическом движении, сталкиваются и отталкиваются друг от друга в беспорядочной взаимности. Позже была развита теория газов на основе следующих положений: 1) газ соетоит из огромного числа молекул, находящихся в непрерывном тепловом движении; 2) молекулы подчиняются законам механики, между ними отсутствует взаимодействие; 3) постоянно происходящие между молекулами столкновения подобны столкновениям между абсолютно упругими шарами и происходят без потери скоростей. Молекулы лишь меняют направление движения, а их общая кинетическая энергия остается постоянной.  [5]

Газообразное состояние вещества характеризуется малым взаимодействием между его частицами и большими расстояниями между ними. Поэтому газы смешиваются в любых отношениях. При очень высоких давлениях, когда плотность газа приближается к плотности жидкости и газ нельзя считать идеальным даже приближенно, может наблюдаться ограниченная растворимость.  [6]

Газообразное состояние вещества ( газ) — агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, равномерно заполняя в отсутствие внешних полей весь предоставленный им объем.  [7]

Газообразное состояние вещества характеризуется беспорядочным тепловым движением молекул. Последние соударяются друг с другом и со стенками сосуда, в котором находится газ. Удары молекул о стенки сосуда создают давление, которое численно равно силе ударов, приходящихся на единицу поверхности стенок.  [8]

Газообразное состояние вещества является наиболее простым по своим свойствам, особенно при не слишком больших давлениях и не слишком низких температурах. Если, например, при больших давлениях ( больше 100 атм) такие газы, как О2, N2 и Н2, взятые при одинаковых начальных температурах и давлениях, будут иметь заметные оттичия по сжимаемости и тепловому расширению, то при давлениях, близких к одной атмосфере, индивидуальные различия указанных и других газов сглаживаются.  [9]

Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества — атомы или молекулы — большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают заметное действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы па общее поведение газа при тех или иных изменениях его состояния.  [10]

Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества — — атомы или молекулы — большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают свое действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы на общее поведение газа при тех или иных изменениях его состояния.  [11]

Газообразное состояние вещества характеризуется ничтожно малыми силами, действующими между молекулами этого вещества, причем размеры самих молекул по сравнению со средними расстояниями между ними также малы. Движение молекул газа в межмолекулярных пространствах до их столкновения совершается равномерно, прямолинейно и беспорядочно.  [12]

Газообразному состоянию вещества соответствует полный молекулярный беспорядок.  [13]

Газообразному состоянию вещества соответствует полный молекулярный беспорядок. Такому распределению молекул ( или атомов) соответствует очень большое число всевозможных перегруппировок молекул в пространстве. Однако физические свойства вещества при всех этих перегруппировках остаются неизменными. Поэтому им всем соответствует одно газообразное состояние.  [14]

Различают капельно-жидкое и газообразное состояние вещества.  [15]

Страницы:    9ensp;9ensp;1  9ensp;9ensp;2  9ensp;9ensp;3  9ensp;9ensp;4

Поделиться ссылкой:

Газообразное состояние вещества
Главная | О нас | Обратная связь

Газообразное состояние вещества

К основному газовому закону относится уравнение состояния газа Менделеева-Клайперона pV = nRT. где n – число молей газа, R – постоянная, равная 8,314 Дж/(К×моль) или (л×кПа)/(К9times;моль). Газ, который подчиняется этому закону, называется идеальным.

Закон Авогадро гласит: в равных объемах всех газов при одинаковых давлении и температуре содержится одинаковое число молекул. В одном моле содержится 6,022×10 23 молекул. При стандартных условиях моль газа занимает объем 22,4 л.

Предполагается, что существование идеального газа возможно при следующих условиях: газ состоит из большого числа молекул, находящихся в непрерывном движении; молекулы газа не притягиваются друг к другу; время столкновения молекул друг с другом очень мало по сравнению со временем между столкновениями; средняя кинетическая энергия газа пропорциональна абсолютной температуре.

Вследствие непрерывного движения молекулы газа стремятся распространиться по всему объему. Такое распространение называется диффузией, скорость этого процесса обратно пропорциональна корню квадратному из плотности газа.

Поведение реальных газов отклоняется от законов, определенных для идеальных газов. Причиной таких отклонений является межмолекулярное взаимодействие, а также то, что каждая молекула имеет свой собственный объем. Ван-дер-Ваальсом было предложено уравнение состояния газа, учитывающее эти факторы: (p + an 2 / V 2 )×(V – nb) = nRT .

Здесь постоянная а учитывает межмолекулярные взаимодействия, и ее значение растет с увеличением энергии ван-дер-ваальсовского взаимодействия, а постоянная в учитывает объем молекул, и ее значение увеличивается с увеличением размера молекул.

Жидкое состояние вещества

При повышении давления расстояние между частицами газа уменьшается и все больше проявляются силы притяжения молекул. При некотором давлении, зависящем от природы вещества и температуры, происходит превращение газа в жидкость – конденсация газа.

Согласно молекулярно-кинетической теории расстояния между частицами жидкости намного меньше, чем в газах, поэтому между ними возникают ван-дер-ваальсовы взаимодействия: дисперсионные, диполь-дипольные и индукционные. Эти взаимодействия удерживают молекулы друг около друга и приводят к их некоторому упорядочиванию или объединению частиц. Небольшие группы частиц, объединенных теми или иными силами, получили название кластеров. В случае одинаковых частиц кластеры в жидкости называются ассоциатами.

Степень упорядоченности повышается с увеличением полярности молекул, так как при этом растут ван-дер-ваальсовы силы. Особенно значительно упорядочение при образовании водородных связей между молекулами. Однако даже водородные связи, и тем более ван-дер-ваальсовы силы, относительно непрочны, поэтому молекулы в жидком состоянии находятся в непрерывном движении, получившем название броуновского движения.

Вследствие непрерывного движения отдельные молекулы могут вырываться из жидкости и переходить в газообразное состояние. Этот процесс называется испарением жидкости. Склонность жидкости к испарению называется летучестью. Вследствие испарения растет парциальное давление пара данной жидкости в газовой фазе над жидкостью, т.е. конденсация пара. При некотором парциальном давлении скорости испарения и конденсации пара становятся равными, и такое давление называется давлением насыщенных паров жидкости.

При парциальном давлении насыщенных паров жидкости, равном атмосферному давлению, образуются пузырьки газа жидкости, и начинается кипение. Температура, при которой достигается это состояние, называется температурой кипения жидкости.

Жидкости обладают текучестью. Сопротивление жидкости текучести носит название вязкости. Вязкость растет с увеличением энергии взаимодействия частиц и зависит от структуры молекул. С увеличением температуры вязкость уменьшается.

Силы молекулярного взаимодействия молекул, находящихся на поверхности, не уравновешены, поэтому результирующая сила направлена в глубь жидкости. Под действием этой силы жидкость стремится к сокращению своей поверхности. Наименьшую поверхность при одинаковом объеме имеет сфера, поэтому капля жидкости принимает форму сферы.

Для образования новой поверхности требуется дополнительная энергия, которая получила название поверхностного натяжения s, Дж/м 2 .

При охлаждении жидкости происходит дальнейшее снижение кинетической энергии частиц. При некоторой температуре или интервале температур жидкость переходит в твердое состояние, в котором частицы практически утрачивают поступательное движение и сохраняют в основном колебания около своего положения. В отличие от газов носителями свойств жидкости являются молекулы, носителем свойств твердого тела является фаза. Твердые вещества могут находиться в аморфном или кристаллическом состояниях.

Подавляющее большинство твердых тел (в том числе все без исключения металлы) находятся в кристаллическом состоянии, поэтому характеризуются дальним порядком, т.е. трехмерной периодичностью по всему объему твердого тела. Регулярное расположение частиц в твердом теле изображается в виде решетки. в узлах которой находятся те или иные частицы.

Монокристаллы характеризуются анизотропностью, т.е. зависимостью свойств от направления в пространстве. Однако следует заметить, что реальные твердые вещества (металлы в том числе) поликристаллические, т.е. состоят из множества кристаллов, ориентированных по разным осям координат, поэтому в поликристаллических телах анизотропия не проявляется.

Кристаллические тела плавятся при определенной температуре, называемой температурой плавления. Кристаллы характеризуются энергией постоянной кристаллической решетки и координационным числом (числом частиц, непосредственно примыкающих к данной частице в кристалле). Постоянная решетки характеризует расстояния между центрами частиц, занимающих узлы в кристалле в направлении осей, совпадающих с направлениями основных граней. Энергией кристаллической решетки называют энергию, необходимую для разрушения одного моля кристалла и удаления частиц за пределы их взаимодействия. Основной вклад в энергию вносит энергия химической связи между частицами в решетке, кДж/моль.

Наименьшей структурной единицей кристалла, которая выражает все свойства его симметрии, является элементарная ячейка. При многократном повторении ячейки по трем измерениям получают всю кристаллическую решетку. Для металлов характерны два типа кристаллической решетки – кубическая и гексагональная (рис. 2.2).

Рис. 2.2. Типы элементарных ячеек

кристаллической решетки металлов:

а – гексагональная; б – кубическая;

в – кубическая центрированная

Многие вещества могут существовать в двух и более кристаллических структурах. Такое явление называется полиформизмом. Так, а -железо имеет объемноцентрированную кубическую ячейку, а g-железо – гранецентрированную и т.д.

По природе частиц в узлах кристаллической решетки и химических связей между ними все кристаллы можно разделить на молекулярные, атомно-ковалентные, ионные и металлические. Кроме того, существуют кристаллы со смешанными химическими связями.

В молекулярных кристаллах в узлах решеток находятся молекулы, между которыми действуют ван-дер-ваальсовы силы, имеющие высокую энергию и определяющие свойства этих кристаллов. Вещества с молекулами сферической формы имеют структуру плотной упаковки. Кристаллы с полярными молекулами в узлах имеют более высокую прочность и температуру плавления, чем кристаллы с неполярными молекулами. Значительное упрочнение кристаллов обусловливают водородные связи.

В атомно-ковалентных кристаллах в узлах располагаются атомы, образующие друг с другом прочные ковалентные связи. Это обусловливает высокую энергию решетки и соответственно физические свойства веществ. Из-за направленности ковалентных связей координационные числа и плотность упаковки в атомно-ковалентных кристаллах невелики.

В ионных кристаллах структурными единицами являются положительно и отрицательно заряженные ионы, между которыми происходит электростатическое взаимодействие, характеризуемое достаточно высокой энергией. Этим объясняются свойства веществ с ионными кристаллами. Из-за ненаправленности и ненасыщенности связей и сферической формы частиц координационные числа у ионов могут быть высокими. У соединений со сложными ионами форма кристаллической решетки искажается.

Металлические кристаллы характеризуются рядом особых свойств: высокими электрической проводимостью, теплопроводностью, ковкостью, пластичностью, металлическим блеском и высокой отражательной способностью. Эти специфические свойства металлов объясняются особым типом химической связи, получившей название металлической.

У большинства металлов на внешней электронной оболочке имеется значительное число вакантных орбиталей и малое число электронов, поэтому энергетически более выгодно, чтобы электроны не были локализованы, а принадлежали всему металлу. Между положительно заряженными ионами металла и нелокализованными электронами существует электростатическое взаимодействие, обеспечивающее устойчивость вещества. Энергия этого взаимодействия является промежуточной между энергиями ковалентных и молекулярных кристаллов. Наличие электронов, которые могут свободно перемещаться по объему кристалла, обеспечивает высокие электрическую проводимость и теплопроводность, а также ковкость и пластичность металлов.

Тот или иной вид химической связи или взаимодействия в чистом виде в кристаллах встречается редко. Обычно между частицами существуют сложные взаимодействия, которые описываются наложением двух или более видов связей друг на друга. Это так называемые кристаллы со смешанными связями. Так, в некоторых кристаллах наряду с ван-дер-ваальсовыми силами возникают водородные связи, значительно упрочняющие кристаллы. Ионная связь в чистом виде практически отсутствует, так как между частицами в ионных кристаллах также действует ковалентная связь. У a- или f -металлов наряду с нелокализованной металлической связью могут действовать ковалентные связи между соседними атомами. В атомных кристаллах наряду с ковалентной связью могут существовать ван-дер-ваальсовы силы с образованием двумерных плоских (слоистых) структур. Такие соединения называют интеркалятами. Особенно это характерно для кристаллов с включением графита.

Слоистые соединения являются разновидностью особого класса соединений, называемых клатратами или соединениями включения, которые образованы включением молекул «гостей» в полости кристаллического каркаса, состоящего из частиц другого вида – «хозяев».

При перекачке углеводородных газов под давлением образуются твердые газовые клатраты, которые, осаждаясь на внутренних поверхностях трубопроводов и арматуры, забивают их и тем самым нарушают процесс перекачки.

Газообразные вещества: примеры и свойства

На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.

Часть веществ — это природные обитатели, формирующиеся естественным путем. Другая половина — искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.

Газообразное состояние вещества

Агрегатные состояния веществ

С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.

Что она собой представляет? Это частично или полностью ионизированные газы. И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:

  • межзвездное вещество;
  • космическая материя;
  • высшие слои атмосферы;
  • туманности;
  • состав многих планет;
  • звезды.

Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.

Газообразные вещества: примеры

Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы — это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.

Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.

По составу различают:

К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород — О2. озон — О3. водород — Н2. хлор — CL2. фтор — F2. азот — N2 и прочие.

Ко второй категории следует относить такие соединения, в состав которых входит несколько атомов. Это и будут газообразные сложные вещества. Примерами служат:

Газообразное состояние вещества

Классификация по природе веществ

Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:

К категории газов неорганической природы относятся хлор, фтор, аммиак, угарный газ, силан, веселящий газ, инертные или благородные газы и прочие.

Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.

Свойства газов

Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.

Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.

  1. Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
  2. В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
  3. Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
  4. Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
  5. Диффузия — одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
  6. Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
  7. Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
  8. Вязкость возрастает с увеличением давления и температуры.
  9. Существует два варианта межфазового перехода: испарение — жидкость превращается в пар, сублимация — твердое вещество, минуя жидкое, становится газообразным.

Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.

Газообразное состояние вещества

Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.

Сжимаемость

При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких — сжимаются.

Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.

Газообразное состояние вещества

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов — процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

  1. Амедео Авогадро в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*10 23 молекул для 1 моль любого газа.
  2. Ферми — создал учение об идеальном квантовом газе.
  3. Гей-Люссак, Бойль-Мариотт — фамилии ученых, создавших основные кинетические уравнения для расчетов.
  4. Роберт Бойль.
  5. Джон Дальтон.
  6. Жак Шарль и многие другие ученые.

Строение газообразных веществ

Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.

Поэтому основные типы строения решеток для газов, это:

Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.

Газообразное состояние вещества

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон — О3 ). Тип связи — ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях — темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа — I2 .

Газообразное состояние вещества

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Сложные соединения газообразной природы

Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.

Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:

Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений — важная часть химических синтезов, осуществляемых в промышленности.

Метан и его гомологи

Иногда общим понятием «газ» обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:

В промышленности они являются очень важными, ведь именно пропан-бутановая смесь — это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.

Газообразное состояние вещества

Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.

Кислород и углекислый газ

Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден — кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.

Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ — необходимый продукт «питания» для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.

С химической точки зрения и кислород, и углекислый газ — важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.

Это такая группа соединений, в которых атомы — это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены — газы. Бром — это жидкость при обычных условиях, а йод — легко возгоняющееся твердое вещество. Фтор и хлор — ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.

Газообразное состояние вещества

Всего лишь одно блюдо может стать причиной рака печени? Врач из Таиланда начал новую кампанию, цель которой — заставить людей отказаться от местного блюда, которое может их убить. Причиной такого решения ст.

Газообразное состояние вещества

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Газообразное состояние вещества

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Газообразное состояние вещества

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Газообразное состояние вещества

7 вещей, которые следует мыть и стирать каждый день Это может показаться еще одним пунктом в бесконечном списке ежедневных дел, но за этим кроется эффективный метод, который позволяет создать положитель.

Газообразное состояние вещества

13 признаков, что у вас самый лучший муж Мужья – это воистину великие люди. Как жаль, что хорошие супруги не растут на деревьях. Если ваша вторая половинка делает эти 13 вещей, то вы можете с.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *