Внутреннее трение

3.3 Внутреннее трение

Явление внутреннего трения с макроскопической точки зрения связано с возникновением сил трения между слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. Со стороны слоя, движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слои газа. Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев.

Рассмотрим известный опыт Ньютона. Пусть имеются две параллельные пластинки (рис. 1), между которыми находится газ (жидкость).

Внутреннее трение

Расстояние между пластинками h. Нижнюю пластинку будем удерживать неподвижно, верхнюю заставим двигаться в одном и том же направлении в своей плоскости с постоянной скоростью u0.

Слой газа, непосредственно прилегающий к верхней пластинке, будет иметь ту же скорость u0. что и пластинка, слой же газа, прилегающий к нижней пластинке, находится в покое. Как показывает опыт, любой промежуточный слой движется со скоростью u, пропорциональной расстоянию x от неподвижной пластинки, т. е.

Это закон внутреннего вязкого трения Ньютона, который установил его экспериментально. Закон утверждает: при стационарном (ламинарном) движении слоев жидкости или газа с различными скоростями между ними возникают касательные силы, пропорциональные градиенту скорости слоев и площади их соприкосновения. Физический смысл коэффициента вязкости заключается в том, что он численно равен силе, действующей на единицу площади поверхности, параллельной скорости течения газа или жидкости, при градиенте скорости .

Согласно второму закону Ньютона, . где K – импульс элементарной массы слоя газа. Поэтому (3.3.5) можно представить в виде бесконечно малых:

Пусть изменение скорости движения газа или жидкости происходит в направлении оси X, а сама скорость течения направлена перпендикулярно этой оси (рис. 2).

Внутреннее трение

Тогда закон Ньютона (3.3.6) утверждает: импульс, переносимый за время dt через площадку dS, перпендикулярной оси X, пропорционален времени dt, величине площадки dS и градиенту скорости . Знак “минус” означает, что импульс переносится в направлении уменьшения скорости слоя.

С молекулярно-кинетической точки зрения причиной внутреннего трения является наложение упорядоченного движения слоев газа с различными гидродинамическими скоростями u и хаотического теплового движения молекул. В результате теплового движения, молекулы из более быстрого слоя переносят с собой больший упорядоченный импульс и, сталкиваясь, передают его молекулам более медленно движущегося слоя, вследствие чего он увеличивает скорость. Наоборот, при переходе молекул из медленно движущегося слоя в более быстрый слой, они приносят в него меньший упорядоченный импульс, что приводит к уменьшению упорядоченной скорости этого слоя. Увеличение или уменьшение гидродинамической скорости слоя газа, согласно второму закону динамики, свидетельствует о наличии силы внутреннего трения, действующей между слоями. Следовательно, за счет теплового хаотического движения скорости слоев будут выравниваться, если, конечно, внешними силами не поддерживать разности скоростей слоев.

Таким образом, с точки зрения молекулярно-кинетической теории в процесс внутреннего трения каждая молекула переносит упорядоченный импульс , вызывая тем самым изменение импульса слоя. Подставляя в общее уравнение переноса (4.4.7) и , получим:

Сравнивая последнее соотношение с (3.3.6), получим формулу для коэффициента вязкости газов:

Из формулы (3.3.8) видно, что коэффициент вязкости газов, как и коэффициент теплопроводности, не зависит от давления. Опыт подтверждает этот вывод. Отклонения наблюдаются при очень низких и очень высоких давлениях, когда начинает зависеть от давления. Зависимость от температуры такая же, как для коэффициента теплопроводности.

Наиболее точные методы измерения коэффициента вязкости основаны на формуле Пуазейля:

где V – объем газа, протекшего за время t через капилляр радиуса r и длины l при разности давлений на его концах. Измерив в опыте все указанные величины, из формулы Пуазейля находят коэффициент вязкости .

Внутреннее трение

Внутреннее трение

Внутреннее трение

Явление — внутреннее трение

Явление внутреннего трения ( вязкости) связано с возникновением сил трения между двумя слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. Причиной внутреннего трения является перенос молекулами количества движения из одного слоя газа в другой.  [1]

Явление внутреннего трения в газах и жидкостях состоит в возникновении сил трения между двумя смежными слоями среды, движущимися параллельно относительно друг друга.  [2]

Явление внутреннего трения описывается следующим образом.  [3]

Явление внутреннего трения ( вязкости) связано с возникновени-нием сил трения между слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. Со стороны слоя, движущегося быстрее, на более медленно движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слои газа. Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев. С точки зрения кинетической теории газов, причиной внутреннего трения является наложение упорядоченного движения слоев газа с различными скоростями v и хаотического теплового движения молекул, интенсивность которого зависит от температуры. Благодаря тепловому движению молекулы переходят из слоя В ( рис. 11.12), движущегося со скоростью v2, в слой А движущийся со скоростью YI.  [4]

Явление внутреннего трения ( вязкости) наблюдается в телах при всех агрегатных состояниях, но большое практическое значение это явление имеет для жидкостей и газов.  [5]

Явление внутреннего трения заключается во взаимодействии слоев текущего газа.  [6]

Для явления внутреннего трения справедлив закон И.  [7]

Благодаря явлению внутреннего трения на слой воздуха, примыкающий к пластинке ( адсорбированный пластинкой), действует со стороны движущихся слоев сила трения.  [8]

Под явлением внутреннего трения. или вязкости, подразумевается возникновение сил трения между слоями исследуемого вещества, движущимися друг относительно друга с разными по величине скоростями.  [9]

В явлении внутреннего трения молекулы. переходя из одного слоя движущегося газа в другой, не сразу приобретают в среднем скорость этого слоя.  [10]

На явлении внутреннего трения газов. при котором движение одного элементарного слоя газа передается другому, и явлении внешнего трения, благодаря которому движущаяся твердая стенка увлекает непосредственно прилегающий к ней слой газа, основано устройство так называемого молекулярного насоса.  [12]

При рассмотрении явления внутреннего трения у золей было обращено внимание на структурную вязкость, которая отвечает, как показали работы Шведова упругости, характерного для твердого тела.  [14]

С точки зрения кинетической теории явление внутреннего трения заключается в переносе молекулами количества движения от слоев, движущихся с большей-скоростью, к слоям, движущимся с меньшей скоростью. Это приращение количества движения и определяет силу, действующую между слоями.  [15]

Страницы:    9ensp;9ensp;1  9ensp;9ensp;2  9ensp;9ensp;3  9ensp;9ensp;4

Поделиться ссылкой:

Явление внутреннего трения (вязкость)

Идеальная жидкость, т.е. жидкость, движущаяся без трения, является абстрактным понятием. Всем реальным жидкостям и газам в большей или меньшей степени присуща вязкость или внутреннее трение. Вязкость (внутреннее трение) наряду с диффузией и теплопроводностью относится к явлениям переноса и наблюдается только в движущихся жидкостях и газах. Вязкость проявляется в том, что возникающее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается.

Вязкость(внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла энергии, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей — это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Молекулярно-кинетическая теория объясняет вязкость движением и взаимодействием молекул.

В жидкостях, где расстояния между молекулами много меньше, чем в газах, вязкость обусловлена в первую очередь межмолекулярным взаимодействием, ограничивающим подвижность молекул. В жидкости молекула может проникнуть в соседний слой лишь при образовании в нём полости, достаточной для перескакивания туда молекулы. На образование полости (на «рыхление» жидкости) расходуется так называемая энергия активации вязкого течения. Энергия активации уменьшается с ростом температуры и понижением давления. В этом состоит одна из причин резкого снижения вязкости жидкостей с повышением температуры и роста её при высоких давлениях. При повышении давления до нескольких тыс. атмосфер вязкость увеличивается в десятки и сотни раз. Строгая теория вязкости жидкостей, в связи с недостаточной разработанностью теории жидкого состояния, ещё не создана.

Вязкость отдельных классов жидкостей и растворов зависит от температуры, давления и химического состава.

Вязкость жидкостей зависит от химической структуры их молекул. В рядах сходных химических соединений (насыщенные углеводороды, спирты, органические кислоты и т.д.) Вязкость изменяется закономерно — возрастает с возрастанием молекулярной массы. Высокая вязкость смазочных масел объясняется наличием в их молекулах циклов. Две жидкости различной вязкости, которые не реагируют друг с другом при смешивании, обладают в смеси средним значением вязкости. Если же при смешивании образуется химическое соединение, то вязкость смеси может быть в десятки раз больше, чем вязкость исходных жидкостей.

Возникновение в жидкостях (дисперсных системах или растворах полимеров) пространственных структур, образуемых сцеплением частиц или макромолекул, вызывает резкое повышение вязкости. При течении «структурированной» жидкости работа внешней силы затрачивается не только на преодоление вязкости, но и на разрушение структуры.

В газах расстояния между молекулами существенно больше радиуса действия молекулярных сил, поэтому Вязкость газов определяется главным образом молекулярным движением. Между движущимися относительно друг друга слоями газа происходит постоянный обмен молекулами, обусловленный их непрерывным хаотическим (тепловым) движением. Переход молекул из одного слоя в соседний, движущийся с иной скоростью, приводит к переносу от слоя к слою определённого импульса. В результате медленные слои ускоряются, а более быстрые замедляются. Работа внешней силы F. уравновешивающей вязкое сопротивление и поддерживающей установившееся течение, полностью переходит в теплоту. Вязкость газа не зависит от его плотности (давления), так как при сжатии газа общее количество молекул, переходящих из слоя в слой, увеличивается, но зато каждая молекула менее глубоко проникает в соседний слой и переносит меньший импульс (закон Максвелла).

Вязкость — важная физико-химическая характеристика веществ. Значение вязкости приходится учитывать при перекачивании жидкостей и газов по трубам (нефтепроводы, газопроводы). Вязкость расплавленных шлаков весьма существенна в доменном и мартеновском процессах. Вязкость расплавленного стекла определяет процесс его выработки. По вязкости во многих случаях судят о готовности или качестве продуктов или полупродуктов производства, поскольку вязкость тесно связана со структурой вещества и отражает те физико-химические изменения материала, которые происходят во время технологических процессов. Вязкость масел имеет большое значение для расчёта смазки машин и механизмов и т.д.

Прибор для измерения вязкости называется вискозиметром.

§ 6. Механизм внутреннего трения

Внутреннее трение в твердых телах может быть вызвано несколькими различными механизмами, и хотя все они, в конце концов, приводят к преобразованию механической энергии в теплоту, эти

механизмы включают в себя два различных диссипативных процесса. Эти два процесса представляют собой, грубо говоря, аналоги вязких потерь и потерь путем теплопроводности при распространении звуковых волн в жидкостях.

Первый тип процесса зависит непосредственно от неупругого поведения тела. Если кривая напряжение — деформация для единичного цикла колебаний имеет вид петли гистерезиса, то площадь, заключенная внутри этой петли, представляет ту механическую энергию, которая теряется в форме тепла. Когда образец совершает замкнутый цикл напряжений «статически», определенное количество энергии рассеивается и эти потери представляют часть специфического рассеяния при колебаниях образца. Как показали Джемант и Джексон [40], даже в том случае, когда петля гистерезиса настолько узкая, что не может быть измерена статически, она оказывает существенное влияние на затухание колебаний, так как в опыте на колебания образец может совершать большое число замкнутых циклов гистерезиса. Потеря энергии за один цикл постоянна, так что специфическое рассеяние и, следовательно, логарифмический декремент не зивисят от частоты. Джемант и Джексон нашли, что для многих материалов логарифмический декремент действительно постоянен в довольно широкой области частот, и пришли к заключению, что основная причина внутреннего трения в этих случаях может быть связана просто со «статической» нелинейностью зависимости напряжение — деформация материала. Аналогичные результаты были получены Вегелем и Уолтером [155] при высоких частотах.

В дополнение к статическому гистерезису многие материалы обнаруживают потери, связанные с перепадами скорости, возникающими при колебаниях, причем силы, порождающие эти потери, можно рассматривать как имеющие вязкую природу. Как мы видели, наличие таких сил означает, что механическое поведение зависит от скорости деформирования; этот эффект отмечается, в частности, в органических полимерах с длинными молекулярными цепочками. Предметом реологии является главным образом такого рода зависимость от времени.

Можно различать два типа вязких потерь в твердых телах, что качественно соответствует поведению моделей Максвелла и Фохта, описанных в предыдущих параграфах. Так, когда нагрузка поддерживается постоянной, это может привести к необратимой деформации, как в модели Максвелла, или же деформация может с течением времени асимптотически стремиться к некоторому постоянному значению и медленно исчезать при снятии нагрузки, как это происходит в модели Фохта. Последний тип вязкости называют иногда внутренней вязкостью, а о механическом поведении таких тел говорят как о запаздывающей упругости.

Истолкование эффектов вязкости в твердых телах в молекулярных масштабах не вполне ясно главным образом потому, что типы микроскопических процессов, которые приводят к рассеянию механической

энергии в форме тепла, относятся еще в значительной степени к области догадок. Тобольский, Пауэл и Эринг [145] и Алфрей [2] исследовали вязко-упругое поведение с помощью теории скоростных процессов. В этом подходе делается предположение, что каждая молекула (или каждое звено молекулярной цепочки в случае полимеров с длинными молекулярными цепочками) совершает тепловые колебания в «энергетическом колодце», образованном ее соседями. В результате тепловых флуктуаций время от времени появляется энергия, достаточная для того, чтобы молекула могла покинуть колодец, и при наличии внешних сил имеет место диффузия, одинаковая во всех направлениях. Скорость диффузии зависит от вероятности получения молекулой энергии, достаточной для того, чтобы покинуть колодец, и, следовательно, от абсолютной температуры тела. Если к телу приложено гидростатическое давление, высота энергетического колодца изменяется, скорость диффузии становится другой, но остается одинаковой во всех направлениях. При одноосном растяжении высота колодца в направлении растягивающего напряжения становится ниже, чем в направлении, перпендикулярном к нему. Поэтому молекулы с большей вероятностью будут распространяться параллельно растягивающему напряжению, чем в перпендикулярном к нему направлении. Это течение приводит к преобразованию упругой энергии, накопленной телом, в беспорядочное тепловое движение, которое в макроскопическом масштабе воспринимается как внутреннее трение. Там, где молекулы движутся целиком, течение будет необратимым, и поведение будет аналогично модели Максвелла, тогда как там, где звенья молекул перепутаны, материал ведет себя подобно модели Фохта и обнаруживает запаздывающую упругость.

Если сделать определенные предположения относительно формы колодца потенциальной энергии и природы молекулярных групп, которые в нем колеблются, то можно показать (Тобольский, Пауэл, Эринг [145], стр. 125), что теория приводит к механическому поведению тела, подобному тому, которое описывается моделями пружина— амортизатор, рассмотренными ранее в этой главе. В такой трактовке вопроса подчеркивается зависимость вязко-упругих свойств от температуры; из этой зависимости могут быть выведены термодинамические соотношения. Главное неудобство в приложении теории к реальным телам в количественном отношении связано с тем, что природа потенциального колодца для тел является в значительной мере предметом догадки и что часто несколько различных процессов могут протекать одновременно. Тем не менее, это пока почти единственный серьезный подход к молекулярному объяснению наблюдаемых эффектов, и он дает надежную базу для развития в будущем.

Потери происходят в однородных неметаллических телах главным образом подобно тому, как описано выше, и внутреннее трение связано скорее с неупругим поведением материала, чем с его макроскопическими тепловыми свойствами. В металлах, однако, имеются

потери теплового характера, которые, вообще говоря, более существенны, и Зенер [162] рассмотрел несколько различных тепловых механизмов, приводящих к рассеянию механической энергии в форме тепла.

Изменения объема тела должны сопровождаться изменениями температуры; так, когда тело сжимается, его температура возрастает, а когда оно расширяется, температура понижается. Для простоты мы рассмотрим изгнбные колебания консольной пластинки (язычка). Каждый раз, когда язычок изогнут, внутренняя сторона нагревается, а наружная охлаждается, так что получается непрерывный поток тепла туда и обратно поперек язычка, совершающего нзгибные колебания. Если движение очень медленное, то перенос тепла совершается изотермически и, следовательно, обратимо, а потому при очень малых частотах колебаний не должно происходить никаких потерь. Если колебания происходят столь быстро, что теплота не имеет времени для перетекания поперек язычка, то условия становятся адиабатическими и попрежнему никаких потерь не возникает. При изгибных же колебаниях, периоды которых сравнимы с временем, необходимым для перетекания тепла поперек язычка, возникает необратимое превращение механической энергии в теплоту, наблюдаемое в виде внутреннего трения. Зенер [161] показал, что для колеблющегося язычка специфическое рассеяние дается выражением

и — адиабатическое и изотермическое значения модуля Юнга материала, -частота колебаний, -релаксационная частота, которая для язычка прямоугольного поперечного сечения имеет выражение

здесь К — теплопроводность, удельная теплоемкость при постоянном давлении, плотность, толщина язычка в плоскости колебаний.

Бенневиц и Рётгер [10] измерили внутреннее трение в немецких серебряных язычках при поперечных колебаниях. Результаты их экспериментов показаны на фиг. 29 вместе с теоретической кривой, полученной с помощью уравнения (5.60). При построении этой кривой не были использованы никакие произвольные параметры, причем соответствие между теорией и экспериментом поразительно хорошее. Ясно, что в области частот около (приблизительно 10 гц) теплопроводность в язычке является основной причиной внутреннего трения. Видно также, что при частотах, далеких от экспериментальные значения внутреннего трения выше тех, которые предсказываются теорией, и это указывает на то, что здесь становятся относительно более важными другие влияния. Продольное напряжение будет

порождать аналогичные эффекты, так как часть образца сжата, тогда как другая растянута, и в этом случае тепловой поток параллелен направлению распространения. Так как расстояние между областями сжатия и разрежения в этом случае равно половине длины волны, то потери, вызванные этой причиной, будут малыми при обычных частотах.

Фиг. 29. Сравнения значений внутреннего трения для немецких серебряных пластинок при поперечных колебаниях, измеренных Бенневицем и Рётгером и полученных по теоретическим соотношениям Зенера.

Описанный тип тепловых потерь имеет место независимо от того, однородно тело или нет. Если материал неоднороден, имеются дополнительные механизмы, приводящие к тепловым потерям. Так, в поликристаллическом материале соседние зерна могут иметь различные кристаллографические направления по отношению к направлению деформации и вследствие этого получать при деформировании образца напряжения различной величины. Поэтому температура будет изменяться от кристаллита к кристаллиту, вследствие чего будут возникать мельчайшие тепловые потоки через границы зерен. Как и в случае потерь, связанных теплопроводностью при колебаниях консоли, существует нижний предел частот, когда деформации протекают настолько медленно, что изменения объема совершаются изотермически без каких-либо потерь энергии, а также существует верхний предел частот, когда деформации протекают адиабатически, так что снова никаких потерь не происходит. Наибольшие потери имеют место, когда приложенная частота попадает

между этими двумя пределами; значение этой частоты зависит от размера кристаллического зерна и от теплопроводности среды. Зенер вывел выражение для частоты, при которой потери такого рода максимальны. Это уравнение аналогично (5.61) и имеет вид

где а — средний линейный размер зерна.

Рэндал, Роуз и Зенер [118] измерили внутреннее трение в латунных образцах с различными размерами зерна и нашли, что при использованных частотах максимальное демпфирование наблюдалось, когда размер зерна был очень близок к тому, который определяется уравнением (5.62). Величина внутреннего трения, вызываемого этими микроскопическими тепловыми потоками, зависит от типа кристаллической структуры, так же как и от размера зерна, и возрастает при возрастании упругой анизотропии отдельных кристаллитов. Зенер ([162], стр. 89—90) предположил, что при очень высоких частотах тепловой поток почти полностью ограничивается непосредственной окрестностью границы зерна; это приводит к зависимости, согласно которой специфическое рассеяние пропорционально корню квадратному из частоты колебаний. Этот результат подтвержден экспериментально для латуни Рэндалом, Роузом и Зенером [118]. При очень низких частотах, с другой стороны, тепловой поток происходит во всем материале; отсюда получается соотношение, согласно которому внутреннее трение пропорционально первой степени частоты. Экспериментальные результаты Зенера и Рэндала [164] находятся в согласии с этим выводом.

Имеются два других типа тепловых потерь, о которых необходимо упомянуть. Первый связан с отводом тепла в окружающий воздух; скорость потерь по этой причине, однако, столь мала, что сказывается лишь при очень низких частотах колебаний. Другой вид потерь может возникнуть вследствие отсутствия теплового равновесия между нормальными формами колебаний Дебая; эти потери аналогичны демпфированию ультразвука в газах, вызванному конечностью времени, которое необходимо, чтобы тепловая энергия перераспределилась между различными степенями свободы газовых молекул. Однако в твердых телах равновесие между различными формами колебаний устанавливается настолько быстро, что внутреннее трение, вызванное подобной причиной, можно было бы ожидать заметным только при частотах порядка 1000 мггц. Теория описанного выше явления была рассмотрена Ландау и Румером [80] и позже Гуревичем [47].

Для поликристаллических металлов [69] исследовал внутреннее трение, вызванное «вязким скольжением» на границах кристаллов. Он провел эксперименты по затуханию крутильных колебаний в чистом алюминии и показал, что внутреннее трение в этом случае

можно точно вычислить в предположении, что металл на границах кристаллов ведет себя вязким образом.

Имеется еще два других процесса, происходящих в кристаллических телах при их деформациях, которые могли бы привести к внутреннему трению. Первый из них представляет собой движение в кристаллах областей беспорядка, которые называются дислокациями. Второй процесс состоит в упорядочении растворенных атомов при приложении напряжения; последнее имеет место в тех случаях, когда существуют примеси, растворенные в кристаллической решетке. Роль дислокаций в пластической деформации кристаллов впервые рассматривали Оровен [104], Паланей [113] и Тейлор [138], и, хотя представляется вероятным, что движение этих дислокаций может часто являться существенной причиной внутреннего трения особенно при больших деформациях, точный механизм, по которому упругая энергия рассеивается, в настоящее время не выяснен (см. Бредфилд [15]). Влияние на внутреннее трение растворенных в кристаллической решетке примесей впервые рассмотрел Горский [43] и позднее Сноэк [131]. Основанием к тому, что наличие таких растворенных атомов приводит к внутреннему трению, служит то, что равновесное распределение их в напряженном кристалле отличается от равновесного распределения, когда кристалл ненапряжен. При приложении напряжения установление нового равновесия требует времени, так что деформация отстает от напряжения. Это вносит процесс релаксации, играющий важную роль для осциллирующих напряжений, период которых сравним с временем релаксации. Скорость, с которой равновесие устанавливается, зависит очень заметно от температуры, так что этот тип внутреннего трения должен быть очень чувствительным к температуре.

Частный случай внутреннего трения был обнаружен в ферромагнитных материалах. Беккер и Дёринг [9] дали исчерпывающий обзор экспериментальных и теоретических исследований для материалов этого типа по важной для приложений задаче о магнитострикционном эффекте в возбуждении ультразвука. Найдено, что внутреннее трение в ферромагнитных материалах значительно больше, чем в других металлах, причем оно возрастает при их намагничивании; оно также быстро возрастает с ростом температуры при достижении точки Кюри.

Механизмом, который ослабляет волны напряжений в твердых телах, но который, строго говоря, не является внутренним трением, является рассеяние. Это явление возникает в поликристаллических металлах, когда длина волны становится сравнимой с размером зерна; Мезон и Мак-Скимин [92] провели измерения эффекта рассеяния в алюминиевых стержнях и показали, что, когда длина волны сравнима с размером зерна, затухание обратно пропорционально четвертой степени длины волны. Эта зависимость совпадает с той, которая дана Релеем [120] (том II, стр. 194) для рассеяния звука в газах.

I.6.4 ВНУТРЕННЕЕ ТРЕНИЕ В ЖИДКОСТЯХ

Внутреннее трение возникает в жидкости вследствие взаимодействия молекул. В отличие от внешнего трения, возникающего в месте соприкосновения двух тел, внутреннее трение имеет место внутри движущейся среды между слоями с различными скоростями движения.

При скоростях выше критической скорости слои, близкие к стенкам, заметно отстают вследствие трения от средних, возникают значительные разности скоростей, что влечёт за собой образование вихрей.

Итак, вязкость. или внутреннее трение в жидкостях. обусловливает не только потери энергии на трение, но ещё и новые образования – вихри .

Ньютон установил, что сила вязкости, или внутреннего трения, должна быть пропорциональна градиенту скорости (величина, показывающая, как быстро меняется скорость при переходе от слоя к слою в направлении . перпендикулярном направлению движения слоёв) и площади . на которой обнаруживается действие этой силы. Таким образом, мы приходим к формуле Ньютона:

где — коэффициент вязкости. или внутреннего трения. постоянное число, характеризующее данную жидкость или газ.

Чтобы выяснить физический смысл . положим в формуле (I.149) сек –1. м 2 ; тогда численно ; следовательно, коэффициент вязкости равен силе трения. которая возникает в жидкости между двумя площадками в м 2. если между ними градиент скорости равен единице .

Единица СИ динамической вязкости = паскаль — секунда (Па·с).

(Па·с) равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным (м/с) на (м), возникает сила внутреннего трения в (Н) на (м 2 ) поверхности касания слоёв ( Па·с= Н·с/м 2 ).

Единица, допускавшаяся к применению до 1980 г. пуаз (П), по имени французского учёного Пуазейля, который один из первых (1842 г.) начал точные исследования вязкости при течении жидкостей в тонких трубках (соотношение между единицами динамической вязкости: 1 П = 0,1 Па·с)

Пуазейль . наблюдая движение жидкостей в капиллярных трубках, вывел закон . согласно которому:

где — объём жидкости, протекающий по трубке за время ;

— радиус трубки (с гладкими стенками);

— разность давлений на концах трубки;

— продолжительность протекания жидкости;

Чем больше вязкость, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от температуры, причём характер этой зависимости для жидкостей и газов различен:

q динамическая вязкость жидкостей резко уменьшается с повышением температуры;

q динамическая вязкость газов увеличивается с повышением температуры.

Кроме понятия динамической вязкости применяются понятия текучести и кинематической вязкости .

Текучестью называется величина, обратная динамической вязкости.

Единица СИ текучести =м 2 /(Н·с)=1/(Па·с).

Кинематической вязкостью называется отношение динамической вязкости к плотности среды.

Единица СИ кинематической вязкости м 2 /с.

До 1980 г. к применению допускалась единица: стокс (Ст). Соотношение между единицами кинематической вязкости:

1 стокс (Ст) = 10 –4 м 2 /с.

Когда тело шарообразной формы движется в жидкости, ему приходится преодолевать силу трения:

Формула (I.153) представляет собой закон Стокса .

На законе Стокса основано определение вязкости жидкости вискозиметром Гёпплера. В трубу определённого диаметра, заполненную жидкостью, вязкость которой надо определить, опускают шарик и измеряют скорость его падения, которая и является мерой вязкости жидкости.

Английский учёный О. Рейнольдс в 1883 г. в результате своих исследований пришёл к заключению, что критерием характеризующем движение жидкостей и газов, могут служить числа, определяемые безразмерной совокупностью величин, относящихся к данной жидкости и данному её движению. Состав этих отвлечённых чисел, называемых числами Рейнольдса. таков:

где — линейный размер (например, диаметр) трубы;

— средняя по сечению трубы скорость жидкости;

— безразмерное отвлечённое число.

Оказалось, что именно такая совокупность величин, определяющих состояние жидкости или газа, служит надёжной характеристикой их движения. Часто используют другую, более удобную запись числа :

где — кинематическая вязкость.

Итак, вычисляя числа Рейнольдса для разных жидкостей и газов, нашли, что переход от ламинарного к турбулентному движению происходит для всех них при определённом значении числа Рейнольдса, именно, если (или ), то ламинарное движение устойчиво; если . то ламинарное движение может стать неустойчивым и легко переходит в турбулентное.

Это условие имеет смысл только тогда, когда обеспечено с самого начала спокойное течение; если же оно механически уже возмущено (например, при падении жидкости из резервуара в трубу), то к его изучению предыдущая теория неприменима.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *