Классификация систем

Существует много классификаций систем, признаки классификации и, соответственно, виды систем зависят от целей организационного анализа. Классификация помогает охарактеризовать систему, то есть определить функцию, которую система должна выполнять или сформулировать меиу или определить и оценить факторы, влияющие на систему.

В общем, в научной литературе чаще всего выделяют следующие виды систем:

Абстрактные — системы теоретико-методологического характера, позволяющие описывать общие и специфические свойства организационной структуры элементов, связей и отношений в целостном образовании для познания, изучения и проектирования состояния, поведения и развития исследуемого сложного объекта как системы;

Конкретные — системы, элементы которых являются физическими объектами. Конкретные системы разделяют на природные и искусственные. Природные системы создает природа или общество, но функционируют они в дальнейшем без вмешательства человека. Искусственные системы создает человек или определенное общество для реализации запланированных программ, целей;

Открытые — системы, активно взаимодействуют с внешней средой, обмениваясь с ним ресурсами, и таким образом приспосабливаются к его изменениям. Открытые системы отмечаются, с одной стороны, широким набором связей с внешней средой, а с другой — в значительной зависимости от него;

Закрытые — системы с фиксированными границами, которые не имеют обмена с внешней средой и поэтому относительно независимы от него. Закрытые системы игнорируют внешнее воздействие и не отдают свою энергию внешней среде. Для них характерны, прежде всего, развитые внутренние связи, и создает их обычно человек для удовлетворения конкретных потребностей и интересов;

Динамические — системы, развиваются, изменяются во времени. Такая система выступает структурированным объектом с входами и выходами, в который в определенные моменты можно вводить или выводить ресурсы. Поведение динамических систем можно анализировать в определенном промежутке времени. Процессы в таких системах происходят либо непрерывно, либо в дискретные промежутки времени

Адаптивные — системы, функционирующие в условиях начальной неопределенности и изменчивости внешней среды на основе процесса накопления и использования информации. Им свойственна совокупность реакций, обеспечивающих приспособление к изменениям внутренних и внешних условий;

Иерархические — системы, элементы которых сгруппированы по уровням, вертикально соотносительными между собой, и имеют разветвленные выхода. К основным преимуществам иерархических систем можно отнести; свободу локального воздействия; отсутствие необходимости пропускать слишком большие потоки информации через один пункт управления; повышенную надежность. Основные характеристики иерархических систем — это: последовательное вертикальное размещение уровней, составляющих систему; приоритет действий подсистем высшего уровня; зависимость действий подсистемы высшего уровня от фактического выполнения функций на низших уровнях; относительная самостоятельность подсистем, обеспечивает возможность сочетания централизованного и децентрализованного управления сложной системой. Классификация видов систем по различным признакам приведена в таблице 3.6. [23].

Классификация систем

Системы регулирования движения поездов повышают пропускную способность железных дорог, обеспечивают безопасность движения и оперативное руководство перевозочным процессом, оказывают влияние на рост производительности труда работников, связанных с движением поездов.

В зависимости от места применения системы регулирования движения подразделяются на перегонные и станционные (рис. 1.1).

П е р е г о н н ы е с и с т е м ы разрешают или запрещают отправ-

ление поезда на перегон, исключают возможность отправления по-

езда на занятый перегон или блок-участок.

К перегонным устройствам относятся:

— п о л у а в т о м а т и ч е с к а я б л о к и р о в к а ПАБ, при кото-

рой сигналы, разрешающие поезду занять перегон, открываются при определенных действиях работников, управляющих движением поездов, а закрываются автоматически;

— а в т о м а т и ч е с к а я б л о к и р о в к а АБ, в которой управление показаниями светофоров, ограждающих блок-участки, осуществляется движущимся поездом (без участия человека);

— д и с п е т ч е р с к и й к о н т р о л ь за движением поездов, который помогает поездному диспетчеру оперативно руководить движением поездов на участке;

— а в т о м а т и ч е с к а я л о к о м о т и в н а я с и г н а л и з а ц и я АЛС и устройства безопасности движения поездов. С помощью системы АЛС показания напольных светофоров кодовыми сигналами передаются в кабину машиниста. Кроме этого, АЛС дополняетсят а в т о с т о п о м с устройством проверки бдительности машиниста и контроля скорости движения поезда;

Рис. 1.1. Классификация систем регулирования движения поездов

— а в т о м а т и ч е с к а я п е р е е з д н а я с и г н а л и з а ц и я. а также автоматические шлагбаумы. применяемые на железнодорожных переездах для предупреждения водителей транспортных средств о приближении поезда к переезду и запрещающие движение через переезд.

С т а н ц и о н н ы е с и с т е м ы обеспечивают взаимную зависимость стрелок и сигналов при приеме и отправлении поездов, контролируют положение стрелок, не допускают их перевод при уже заданном маршруте, замыкают их в одном из крайних положений, при оборудовании путей и стрелочных участков рельсовыми цепями, контролируют их свободность или занятость подвижным составом.

К станционным устройствам относятся:

— ключевая зависимость, используемая на станциях, где сохранено ручное управление стрелками для обеспечения взаимного замыкания стрелок и сигналов посредством контрольных замков;

— с т а н ц и о н н а я б л о к и р о в к а. с помощью которой осуществляется взаимное замыкание стрелок и сигналов, управляемых с разных постов;

— э л е к т р и ч е с к а я ц е н т р а л и з а ц и я стрелок и сигналов ЭЦ, обеспечивающая управление стрелками и сигналами с пульта, их взаимозависимость, контролирующую взрез стрелки и исключающую перевод стрелки под составом, а также открытие светофора на занятый путь. Разновидностями такой системы являются р е л е й н а я ц е н т р а л и з а ц и я промежуточных станций, б л о ч н а я м а р ш р у т н о — р е л е й н а я ц е н т р а л и з а ц и я БМРЦ крупных станций и микропроцессорная ЭЦ-МПЦ;

— д и с п е т ч е р с к а я ц е н т р а л и з а ц и я ДЦ, позволяющая управлять стрелками и сигналами ряда станций из одного пункта и контролировать положение стрелок, состояние занятости или свободности путей, стрелочных участков и прилегающих блок-участков, изменять показания входных и выходных сигналов в пределах диспетчерского круга;

— с р е д с т в а а в т о м а т и з а ц и и и м е х а н и з а ц и и с о р т и р о в о ч н ы х с т а н ц и й и г о р о к. позволяющие управлять стрелками и горочными сигналами, регулировать скорости надвига и роспуска составов.

Автоматическая локомотивная сигнализация, диспетчерская централизация и автоматические ограждающие устройства на переездах могут регулировать движение поездов как по перегонам, так и по станциям, поэтому эти системы отнесены к перегонным и к станционным.

Из систем полуавтоматической блокировки наибольшее распространение получила релейная блокировка, в которой все маршрутные зависимости осуществляются электрическим способом, что повышает ее надежность. Наиболее совершенной системой

регулирования движения поездов на перегонах является АБ, которая обеспечивает повышение пропускной способности по сравнению с ПАБ.

Среди станционных систем наиболее эффективной с точки зрения сокращения времени на приготовление маршрута является ЭЦ стрелок и сигналов, которая по сравнению с ключевой зависимостью увеличивает пропускную способность станции на 50. 70 %.

Средства механизации и автоматизации сортировочных станций и горок включают системы АРС (автоматическое регулирование скорости скатывания отцепов), ГПЗУ (горочно-программное задающее устройство), ГАЦ-МН на микропроцессорах, ГАЛС Р (горочная АЛС с передачей информации по радиоканалу и телеуправлением локо-

Таким образом, системы регулирования движения служат для автоматизации процессов управления и регулирования движения поездов. Эти системы постоянно совершенствуются, благодаря чему повышаются технико-экономические показатели эксплуатационной работы железнодорожного транспорта. В настоящее время в указанных системах осуществляется переход на новую элементную базу, применяются микроэлектронная и микропроцессорная техника, малогабаритные реле повышенной надежности РЭЛ.

Общие сведения об элементах систем. Любая система регулирования движения поездов состоит из отдельных элементов, связанных между собой. В этих системах используют в основном э л е к т р и ч е с к и е э л е м е н т ы. в которых одна из величин (входная или выходная) или обе являются электрическими (ток, напряжение). В дальнейшем будем рассматривать только электрические элементы.

В зависимости от выполняемых функций в системах регулирования движения поездов используются следующие элементы: датчики, электрические фильтры, реле, трансмиттеры, стабилизаторы, усилители, дешифраторы, трансформаторы, двигатели, распределители и др.

Э л е к т р и ч е с к и й д а т ч и к предназначен для измерения или преобразования неэлектрических величин в электрические и осуществляет качественное преобразование воздействия. Примером таких датчиков могут служить магнитная педаль ПБМ-56, с помощью которой контролируется прибытие поезда на станцию при полуавтоматической блокировке, а также в других системах регулирования движения, и рельсовая цепь, с помощью которой контролируется наличие или отсутствие подвижной единицы на изолированном путевом участке.

Э л е к т р и ч е с к и й ф и л ь т р пропускает электрические сигналы (напряжение, ток) одних частот и препятствует пропуску сигналов других частот; он осуществляет количественное преобразование воздействия, полученного от предыдущего элемента, и

передачу его на последующий элемент.

Р е л е преобразует электрическую величину (ток, напряжение) в механическую (перемещение якоря), которая снова преобразуется в электрическую величину посредством замыкания или размыкания электрического контакта.

Т р а н с м и т т е р вырабатывает кодовые сигналы, используемые в работе систем регулирования движения поездов. С т а б и л и з а т о р поддерживает постоянство выходной величины при изменении входной величины в известных пределах. У с и л и т е л ь служит для повышения амплитуды электрических сигналов и осуществляет количественное преобразование воздействия. Д е ш и ф р а т о р расшифровывает принятый код и передает воздействие на последующий элемент, осуществляя качественное его преобразование. Т р а н с ф о р м а т о р осуществляет количественное преобразование напряжения. Д в и г а т е л ь преобразует электрическую энергию в механическое движение с целью воздействия на объекта втоматического управления или регулирования. Р а с п р е д е л и т е л ь обеспечивает распределение как во времени, так и по отдельным электрическим цепям поданную на его вход серию импульсов.

Таким образом, элементы являются составной частью систем регулирования движения, которые выполняют ответственные функции по регулированию и обеспечению безопасности движения поездов. Поэтому к элементам систем регулирования движения

предъявляется ряд требований. Элементы должны быть простыми по конструкции и принципу действия, обладать высокой надежностью действия и защищенностью от помех, иметь малые габаритные размеры и массу, легко заменяться в системе и быть доступными для ремонта и профилактических осмотров. При отказе работы элемента должны полностью исключаться в системе положения, опасные для движения поездов.

Исходя из конкретных условий эксплуатации, к элементам может предъявляться и ряд дополнительных требований. Например, к элементам, которые размещаются на локомотивах и в релейных шкафах на пути, предъявляются требования по виброустойчивости, защите от атмосферных воздействий и пыли.

Раздел 1. Теоретические основы системного анализа

1.1. Основные понятия теории систем и системного анализа ………………………………. 4

Раздел 2. Классификация систем в системном анализе

метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов. Системный анализ возник в эпоху разработки компьютерной техники. Успех его применения при решении сложных задач во многом определяется современными возможностями информационных технологий. Таким образом, системный анализ — это совокупность методов, основанных на использовании ЭВМ и ориентированных на исследование сложных систем — технических, экономических, экологических и т.д.

Целью системного анализа является полная и всесторонняя проверка различных вариантов действий с точки зрения количественного и качественного сопоставления затраченных ресурсов с получаемым эффектом.

Системный анализ предназначен для решения в первую очередь слабоструктуризованных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием фактора неопределенности и содержащих неформализуемые элементы, непереводимые на язык математики.

Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учетом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение.

Актуальность темы состоит в том, что рассмотрение категорий системного анализа создает основу для логического и последовательного подхода к проблеме принятия решений. Эффективность решения проблем с помощью системного анализа определяется структурой решаемых проблем.

Цель курсовой работы – изучить теоретические основы системного анализа, характеристики важнейших системообразующих показателей, рассмотреть классификацию систем, что позволит более удобно использовать ее как подходы на начальном этапе моделирования любой задачи, т.к. определив класс системы для реального объекта, можно достаточно уверенно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить.

Раздел 1. Теоретические основы системного анализа

1.1. Основные понятия теории систем и системного анализа

Определение понятия«система». В настоящее время нет един­ства в определении понятия «система». В первых определениях в той или иной форме говорилось о том, что система — это элементы и связи (отношения) между ними. Например, основопо­ложник теории систем Людвиг фон Берталанфи определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отноше­ниях друг с другом и со средой. А. Холл определяет систему как «множество предметов вместе со связями между предметами и между их признаками». Ведутся и в настоящее время дискуссии, какой термин — «от­ношение» или «связь» — лучше употреблять.

Позднее в определениях системы появляется понятие цели. Так, в «Философском словаре» система определяется как «сово­купность элементов, находящихся в отношениях и связях между собой определенным образом и образующих некоторое целост­ное единство».

В последнее время в определение понятия системы наряду с элементами, связями и их свойствами и целями начинают включать наблюдателя, хотя впервые на необходимость учета взаимодействия между исследователем и изучаемой системой указал один из основоположников кибернетики У. Р. Эшби .

М. Месарович и Я. Такахара в книге «Общая теория систем» считают, что система — «формальная взаимосвязь между на­блюдаемыми признаками и свойствами», система множество элементов, находящихся в отношениях и связях друг с другом, которое образует определенную целост­ность, единство.

В соответствии с задачами системного исследования можно выделить два типа определения системы – дескриптивное и конструктивное.

Дескриптивное (описательное) — определение системы через ее свойства, через внешние проявления. Например, ключ – это предмет, легко открывающий замок.

Конструктивное определение – описание через элементы системы, связанные с основным системообразующим фактором – с функцией. В конструктивном плане система рассматривается как единство входа, выхода и процессора (преобразователя), предназначенных для реализации определенной функции.

Далее обзорно и кратко рассмотрены основные понятия, характеризующие строение и функционирование систем, используемые в системном анализе и при использовании системного подхода.

Элемент. Под элементом принято понимать простейшую не­делимую часть системы. Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от ас­пекта его изучения. Таким образом, элемент это предел члене­ния системы с точек зрения решения конкретной задачи и постав­ленной цели. Систему можно расчленить на элементы различ­ными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.

Подсистема. Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, кото­рые представляют собой компоненты более крупные, чем элемен­ты, и в то же время более детальные, чем система в целом. Возможность деления системы на подсистемы связана с вычлене­нием совокупностей взаимосвязанных элементов, способных вы­полнять относительно независимые функции, подцели, направленные на достижение общей цели системы. Названием «подси­стема» подчеркивается, что такая часть должна обладать свойст­вами системы (в частности, свойством целостности). Этим под­система отличается от простой группы элементов, для которой не сформулирована подцель и не выполняются свойства целост­ности (для такой группы используется название «компоненты»). Например, подсистемы АСУ, подсистемы пассажирского транс­порта крупного города.

Структура. Это понятие происходит от латинского слова structure, означающего строение, расположение, порядок. Структу­ра отражает наиболее существенные взаимоотношения между элементами и их группами (компонентами, подсистемами), кото­рые мало меняются при изменениях в системе и обеспечивают существование системы и се основных свойств. Структура — это совокупность элементов и связей между ними. Структура может быть представлена графически, в виде теоретико-множественных описаний, матриц, графов и других языков моделирования струк­тур.

Структуру часто представляют в виде иерархии. Иерархия это упорядоченность компонентов по степени важности (много­ступенчатость, служебная лестница). Между уровнями иерархи­ческой структуры могут существовать взаимоотношения строго­го подчинения компонентов (узлов) нижележащего уровня одно­му из компонентов вышележащего уровня, т. е. отношения так называемого древовидного порядка. Такие иерархии называют сильными или иерархиями типа « дерева». Они имеют ряд особен­ностей, делающих их удобным средством представления систем управления. Однако могут быть связи и в пределах одного уров­ня иерархии. Один и тот же узел нижележащего уровня может быть одновременно подчинен нескольким узлам вышележащего уровня. Такие структуры называют иерархическими структурами со слабыми связями. Между уровнями иерархической структуры могут существовать и более сложные взаимоотношения, напри­мер, типа «страт», «слоев», «эшелонов», которые детально рас­смотрены в разделе “модели иерархических систем управления”. Примеры иерархических структур: энергетические системы, АСУ, государственный аппарат.

Связь. Понятие «связь» входит в любое определение системы наряду с понятием «элемент» и обеспечивает возникновение и со­хранение структуры и целостных свойств системы. Это понятие характеризует одновременно и строение (статику), и функциони­рование (динамику) системы.

Состояние. Понятием «состояние» обычно характеризуют мгно­венную фотографию, «срез» системы, остановку в ее развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макросвойст­ва системы (например, давление, скорость, ускорение — для фи­зических систем; производительность, себестоимость продукции, прибыль — для экономических систем).

Таким образом, состояние это множество существенных свойств, которыми система обладает в данный момент времени.

Поведение. Если система способна переходить из одного со­стояния в другое (например, то говорят, что она обладает поведением. Этим понятием пользуются, когда неиз­вестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и вы­ясняют его закономерности.

Внешняясреда. Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состо­яния вызывает изменение поведения системы.

Модель. Под моделью системы понимается описание систе­мы, отображающее определенную группу ее свойств. Углубление описания — детализация модели. Создание модели системы по­зволяет предсказывать ее поведение в определенном диапазоне условий.

Модель функционирования (поведения) системы — это мо­дель, предсказывающая изменение состояния системы во времени, например: натурные (аналоговые), электрические, машинные на ЭВМ и др.

Системный анализ. В настоящее время системный анализ яв­ляется наиболее конструктивным направлением. Этот термин применяется неоднозначно. В одних источниках он определяется как «приложение системных концепций к функциям управления, связанным с планированием». В других — как синоним тер­мина «анализ систем» (Э. Квейд) или термина «системные ис­следования» (С. Янг). Однако независимо от того, применяется он только к определению структуры целей системы, к планирова­нию или к исследованию системы в целом, включая и функци­ональную и обеспечивающую части, работы по системному ана­лизу существенно отличаются от рассмотренных выше тем, что в них всегда предлагается методология проведения исследований, делается попытка выделить этапы исследования и предложить методику выполнения этих этапов в конкретных условиях. В этих работах всегда уделяется особое внимание определению целей системы, вопросам формализации представления целей. Некоторые авторы даже подчеркивают это в определении: системный анализ — это методология исследования целенаправленных си­стем (Д. Киланд, В. Кинг).

Термин «системный анализ» впервые появился в связи с зада­чами военного управления в исследованиях RAND Corporation (1948 г.), а в отечественной литературе получил широкое распрост­ранение после выхода в 1969 г. книги С. Оптнера «Системный анализ для решения деловых и промышленных проблем».

В начале работы по системному анализу в большинстве случа­ев базировались на идеях теории оптимизации и исследования операций. При этом особое внимание уделялось стремлению в той или иной форме получить выражение, связывающее цель со средствами, аналогичное критерию функционирования или пока­зателю эффективности, т, е. отобразить объект в виде хорошо организованной системы.

Так, например, в ранних руководящих материалах по раз­работке автоматизированных систем управления (АСУ) рекомен­довалось цели представлять в виде набора задач и составлять матрицы, связывающие задачи с методами и средствами до­стижения. Правда, при практическом применении этого подхода довольно быстро выяснялась его недостаточность, и исследова­тели стали прежде всего обращать внимание на необходимость построения моделей, не просто фиксирующих цели, компоненты и связи между ними, а позволяющие накапливать информацию, вводить новые компоненты, выявлять новые связи и т. д„ т. е. отображать объект в виде развивающейся системы, не всегда предлагая, как это делать.

Позднее системный анализ некоторые исследователи начинают определять как «процесс последовательного разбиения изучаемого процесса на подпроцессы» (С. Янг) и основное внимание уделяют поиску приемов, позволяющих организовать решение сложной проблемы путем расчленения ее на подпроблемы и этапы, для которых становится возможным подобрать методы исследования и исполнителей. В большинстве работ стремились представить многоступенчатое расчленение в виде иерархических структур типа «дерева», но в ряде случаев разрабатывались методики получения вариантов структур, определяемых временными последовательностями функций.

В настоящее время системный анализ развивается примени­тельно к проблемам планирования и управления, и в связи с уси­лением внимания к программно-целевым принципам в планиро­вании этот термин стал практически неотделим от терминов «целеобразование» и «программно-целевое планирование и упра­вление». В работах этого периода системы анализируются как целое, рассматривается роль процессов целеобразования в раз­витии целого, роль человека. При этом оказалось, что в систем­ном анализе не хватает средств: развиты в основном средства расчленения на части, но почти нет рекомендаций, как при рас­членении не утратить целое. Поэтому наблюдается усиление внимания к роли неформализованных методов при проведении системного анализа. Вопросы сочетания и взаимодействия фор­мальных и неформальных методов при проведении системного анализа не решены. Но развитие этого научного направления идет по пути их решения.

В качестве объекта системного анализа могут быть рассмотрены любые системы, явления, а также отдельные проблемы, решение которых является особо важным в функционировании системы. Примером такого решения является, например, реализация продовольственной программы, нацеленной на удовлетворение потребностей населения продуктами питания. Это тактический уровень системного анализа, когда в качестве системы рассматривается отдельная проблема.

Классификация систем

Для выделения классов систем могут использоваться различные классификационные признаки. Основными из них считаются: природа элементов, происхождение, длительность существования, изменчивость свойств, степень сложности, отношение к среде, реакция на возмущающие воздействия, характер поведения и степень участия людей в реализации управляющих воздействий. Классификация систем представлена в табл. 1.6.

Таблица 1.6 — Классификация систем

Реальные (физические) Абстрактные

Простые Сложные Большие

Отношение к среде

Реакция на возмущающие воздействия

С управлением Без управления

Степень связи с внешней средой

Открытые Изолированные Закрытые Открытые равновесные Открытые диссипативные

Степень участия в реализации управляющих воздействий людей

Технические Человеко-машинные Организационные

Приведем характеристику различных классов систем.

По природе элементов системы делятся на реальные и абстрактные.

Реальными (физическими) системами являются объекты, состоящие из материальных элементов. Среди них обычно выделяют механические, электрические (электронные), биологические, социальные и другие подклассы систем и их комбинации.

Абстрактные системы составляют элементы, не имеющие прямых аналогов в реальном мире. Они создаются путем мысленного отвлечения от тех или иных сторон, свойств и(или) связей предметов и образуются в результате творческой деятельности человека. Иными словами, это продукт его мышления. Примером абстрактных систем являются системы уравнений, идеи, планы, гипотезы, теории и т.п.

В зависимости от происхождения выделяют естественные и искусственные системы.

Естественные системы, будучи продуктом развития природы, возникли без вмешательства человека. К ним можно отнести, например, климат, почву, живые организмы, солнечную систему и др. Появление новой естественной системы — большая редкость.

Искусственные системы это результат созидательной деятельности человека, со временем их количество увеличивается.

По длительности существования системы подразделяются на постоянные и временные. К постоянным обычно относятся естественные системы, хотя с точки зрения диалектики все существующие системы — временные.

К постоянным относятся искусственные системы, которые в процессе заданного времени функционирования сохраняют существенные свойства, определяемые предназначением этих систем.

В зависимости от степени изменчивости свойств системы делятся на статические и динамические.

К статическим относятся системы, при исследовании которых можно пренебречь изменениями во времени характеристик их существенных свойств. Статическая система — это система с одним состоянием.

В отличие от статических, динамические системы имеют множество возможных состояний, которые могут меняться как непрерывно, так и дискретно.

В зависимости от степени сложности системы делятся на простые, сложные и большие.

Простые системы с достаточной степенью точности могут быть описаны известными математическими соотношениями. Особенность простых систем — в практически взаимной независимости от свойств, которая позволяет исследовать каждое свойство в отдельности в условиях классического лабораторного эксперимента и описать методами традиционных технических дисциплин (электротехника, радиотехника, прикладная механика и др.). Примерами простых систем могут служить отдельные детали, элементы электронных схем и т.п.

Сложные системы состоят из большого числа взаимосвязанных и взаимодействующих элементов, каждый из которых может быть представлен в виде системы (подсистемы). Сложные системы характеризуются многомерностью (большим числом составленных элементов), многообразием природы элементов, связей, разнородностью структуры.

К сложной можно отнести систему, обладающую по крайней мере одним из нижеперечисленных признаков:

1) систему можно разбить на подсистемы и изучать каждую из них отдельно;

2) система функционирует в условиях существенной неопределенности воздействия среды на нее, обусловливает случайный характер изменения ее показателей;

3) система осуществляет целенаправленный выбор своего поведения.

Сложные системы обладают свойствами, которыми не обладает ни один из составляющих элементов. Сложными системами являются живые организмы, в частности человек, ЭВМ и т.д. Особенность сложных систем заключается в существенной взаимосвязи их свойств.

Большие системы — это сложные пространственно-распределенные системы в которых подсистемы (их составные части) относятся к категориям сложных. Дополнительными особенностями, характеризующими большую систему, являются: большие размеры; сложная иерархическая структура; циркуляция в системе больших информационных, энергетических и материальных потоков;высокий уровень неопределенности в описании системы.

По степени связи с внешней средой системы делятся на изолированные, закрытые, открытые равновесные и открытые диссипативные.

Изолированные системы не обмениваются со средой энергией и веществом. Процессы самоорганизации в них невозможны. Энтропия изолированной системы стремится к своему максимуму.

Закрытые системы не обмениваются с окружающей средой веществом, но обмениваются энергией. Они способны к фазовым переходам в равновесное упорядоченное состояние. При достаточно низкой температуре в закрытой системе возникает кристаллический порядок.

Открытые системы обмениваются с окружающей средой энергией и веществом. Изменение энтропии открытой системы ds определяется алгебраической суммой энтропии, производимой внутри системы dps, и энтропии, поступающей извне или уходящей во внешнюю среду dcs, т.е.:

В состоянии прочного равновесия — стационарном состоянии, ds = Открытые системы в значительной мере характеризуются скоростью производства энтропии в единице объема — функцией диссипации (рассеяния), которая по определению:

Классификация систем

где s — функция диссипации; t — время; v — объем.

К открытым равновесным относятся также системы, которые при отклонении от стационарного состояния возвращаются в него экспоненциально, без осцилляции. По теории И. Пригожина, для открытых равновесных систем в стационарных состояниях функция диссипации имеет минимум, т.е. соблюдается принцип экономии энтропии.

Открытые диссипативные системы возникают в результате кооперативных процессов. Их поведение не линейно. Механизм образования диссипативной структуры: подсистемы флуктуируют, иногда достигая точки бифуркации, после которой может наступить порядок более высокого уровня. Переходы в состояния динамической упорядоченности, когерентности, автоколебаний и автокаталитических реакций и в результате роста флуктуации являются своего рода фазовыми переходами.

Изолированных и закрытых систем фактически в природе не существует. Можно проанализировать пример любой из таких систем и убедиться, что нет экранов сразу от всех форм материи или энергии, что любая система быстрее — медленнее развивается или стареет. В вечности понятия «быстро9quot; и «медленно9quot; смысла не имеют, поэтому, строго говоря, существуют только открытые диссипативные системы, близкие к равновесию, условно названные открытыми равновесными системами. Изолированные и закрытые системы заведомо упрощенные схемы открытых систем, полезные при приближенном решении частных задач.

В зависимости от реакции на возмущающие воздействия выделяют активные и пассивные системы.

Активные системы способны противостоять воздействиям среди и сами могут воздействовать на нее. У пассивных систем это свойство отсутствует.

По характеру поведения все системы подразделяются на системы с управлением и без управления.

Класс систем с управлением образуют системы, в которых реализуется процесс целеполагания и целеосуществления.

В зависимости от степени участия человека в реализации управляющих воздействий системы подразделяются на технические, человеко-машинные, организационные. Как правило, когда речь идет о различных видах систем управления, подразумевается именно это их деление.

К техническим относятся системы, которые функционируют без участия человека. Как правило, это системы автоматического управления (регулирования), представляющие собой комплексы устройств для автоматического изменения, например, координат объекта управления, с целью поддержания желаемого режима его работы. Такие системы реализуют процесс технологического управления. Они могут быть как адаптивными, т.е. приспосабливающимися к изменению внешних и внутренних условий в процессе работы путем изменения своих параметров или структуры для достижения требуемого качества функционирования, так и неадаптивными.

Примерами человеко-машинных (эргатических) систем могут служить автоматизированные системы управления различного назначения. Их характерной особенностью является то, что человек сопряжен с техническими устройствами, причем окончательное решение принимает человек (ЛПР), а средства автоматизации лишь помогают ему в обосновании правильности этого решения.

К организационным системам относятся социальные системы — группы, коллективы людей, общество в целом.

/ МОТС / Часть1 / 8. Классификация систем

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные признаки классификации:

1) по виду отображаемого объекта:

технические; биологические; экономические и т.д.

2) по виду научного направления:

математические; физические; химические

3) детерминированные и стохастические

4) открытые и закрытые

5) абстрактные и материальные

Классификации всегда относительны. Так, в детерминированной системе можно найти элементы стохастичности, и, напротив, детерминированную систему можно считать частным случаем стохастической (при вероятности равной единице). Аналогично, если принять во внимание диалектику субъективного и объективного в системе, то станет понятной относительность разделения системы на абстрактные и объективно существующие: это могут быть стадии развития одной и той же системы.

Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими.

Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как предприятие, поточная линия и т.д.

Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название стохастической. Приведем пример стохастических систем, это – заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

Различают системы линейные и нелинейные. Для линейных систем реакция на сумму двух иди более различных воздействий эквивалентна сумме реакций на каждое возмущение в отдельности, для нелинейных – это условие не выполняется.

Если параметры систем изменяются во времени, то она называется нестационарной. противоположным понятием является понятие стационарной системы.

Пример нестационарных систем – это системы, где процессы, например, старения являются на данном интервале времени существенными.

Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг Δt, то система называется дискретной. Противоположным понятием является понятие непрерывной системы. Например: ЭВМ, электронные часы, электросчетчик – дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. – непрерывные системы.

Классификация систем

Рис.1. Классификация систем по их свойствам.

(Стрелки указывают возможный набор свойств системы).

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем — способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются (разумеется, с точностью до принятой чувствительности модели) полностью лишенными этой способности, т. е. изолированными от среды.

Одна из наиболее полных и интересных классификаций по уровням сложности предложена К.Боулдингом. Выделенные в ней уровни приведены в табл. 1.1.

В классификации К.Боуддинга каждый последующий класс включает в себя предыдущий, характеризуется большим проявлением свойств открытости и стохастичности поведения, более ярко выраженными проявлениями закономерностей иерархичности и историчности (рассматриваемых ниже), хотя это не всегда отмечается, а также более сложными «механизмами» функционирования и развития.

Впервые разделение систем по степени организованности по аналогии с классификацией Г.Саймона и А.Ньюэлла (хорошо структуризованные, плохо структуризованные и неструктуризованные системы) было предложено В.В.Налимовым, который выделил класс хорошо организованных и класс плохо организованных или диффузных систем.

Позднее к этим двум классам был добавлен еще класс самоорганизующихся систем. который включает рассматриваемые иногда в литературе раздельно классы саморегулирующихся,самообучающихся,самонастраивающихся и т.п.систем.

Классификация систем

Выделенные классы практически можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем. Кратко охарактеризуем эти классы.

1. Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

На представлении этим классом систем основаны большинство моделей физических процессов и технических систем.

2. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты и их связи с целями системы.

Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования не всего объекта или класса явлений, а путем изучения определенной с помощью некоторых правил достаточно представительной выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого, выборочного, исследования получают характеристики или закономерности (статистические, экономические и т. п.), и распространяют эти закономерности на поведение системы в целом.

3. Отображение объектов в виде самоорганизующихся систем позволяет исследовать наименее изученные объекты и процессы с большой неопределенностью на начальном этапе постановки задачи.

Клacc самоорганизующихся или развивающихся систем характеризуется рядом признаков, особенностей, приближающих их к реальным развивающимся объектам.

• нестационарность (изменчивость, нестабильность) отдельных параметров и стохастичность поведения;

• уникальность и непредсказуемость поведения системы в конкретных условиях (благодаря наличию активных элементов у системы как бы проявляется «свобода воли»), но в то же время наличие предельные возможностей, определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями;

• способность адаптироваться к изменяющимся условиям среды и помехам (причем как к внешним, так и к внутренним), что, казалось бы, является весьма полезным свойством, однако адаптивность может проявляться не только по отношению к помехам, но и по отношению к управляющим воздействиям, что весьма затрудняет управление системой;

• способность противостоять энтропийным (разрушающим систему) тенденциям, обусловленная наличием активных элементов, стимулирующих обмен материальными, энергетическими и инфомационными продуктами со средой и проявляющих собственные «инициативы», благодаря чему в таких системах не выполняется закономерность возрастания энтропии (аналогичная второму закону термодинамики, действующему в закрытых системах, так называемому «второму началу») и даже наблюдаются неэнтропийные тенденции, т.е. собственно самоорганизация, развитие;

• способность вырабатывать варианты поведения и изменять свою структуру (при необходимости), сохраняя при этом целостность и основные свойства;

• способность и стремлением к целеобразованию: в отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами цели формируются внутри системы (впервые эта особенность применительно к экономическим системам была сформулирована Ю.И.Черняком [13]);

• неоднозначность использования понятий (например, «цель» — «средство», «система» — «подсистема» и т. п.); эта особенность проявляется при формировании структур целей, при разработке проектов сложных автоматизированных комплексов, когда лица, формирующие структуру системы, назвав какую-то ее часть подсистемой, через некоторое время начинают говорить о ней, как о системе, не добавляя приставки «под», или подцели начинают называть средствами достижения вышестоящих целей, что часто вызывает затяжные дискуссии, легко разрешимые с помощью свойства «двуликого Януса».

Важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью.

По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось и была осознана их основная особенность — принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

Эта особенность, т. е. необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа.

При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом: разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем, путем преобразования полученного отображения с помощью установленных (принятых) правил (правил структуризации или декомпозиции; правил композиции, поиска мер близости на пространстве состояний), получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения.

Адекватность модели также доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

Иными словами, такое моделирование становится как бы своеобразным «механизмом» развития системы. Практическая реализация такого «механизма» связана с необходимостью разработки языка моделирования процесса принятия решения. В основу такого языка (знаковой системы) может быть положен один из методов моделирования систем (например, теоретико-множественные представления, математическая логика, математическая лингвистика, имитационное динамическое моделирование, информационный подход и т. д.), но по мере развития модели методы могут меняться.

При моделирования наиболее сложных процессов (например, процессов целеобразования, совершенствования организационных структур и т. п.) «механизм» развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа.

Рассматриваемый класс систем можно разбить на подклассы, выделив адаптивные или самоприспосабливающиеся системы, самообучающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и т. п. классы, в которых в различной степени реализуются рассмотренные выше и еще не изученные (например, для самовоспроизводящихся систем) особенности.




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *