Классификация генов

Классификация генов

Накопленные знания о структуре, функциях, характере взаимодействия, экспрессии, мутабильности и других свойствах генов породили несколько вариантов классификации генов.

По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями.

По функциональному значению различают структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены — последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).

По влиянию на физиологические процессы в клетке различают летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др.

Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены — супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов. Мутации в генах приводят к измененному синтезу белковых продуктов и нарушению биохимических или физиологических процессов.

Гомеозисные мутации у дрозофилы позволили открыть существование генов, нормальной функцией которых является выбор или поддержание определенного пути эмбрионального развития, по которому следуют клетки. Каждый путь развития характеризуется экспрессией определенного набора генов, действие которых приводит к появлению конечного результата: глаза, голова грудь, брюшко, крыло, ноги и т. д. Исследования генов комплекса bithorax дрозофилы американским генетиком Льюисом показали, что это гигантский кластер тесно сцепленных генов, функция которых необходима для нормальной сегментации груди (thorax) и брюшка (abdomen). Подобные гены получили название гомеобоксных. Гомеобоксные гены расположены в ДНК группами и проявляют свое действие строго последовательно. Такие гены обнаружены и у млекопитающих, и они имеют высокую гомологию (сходство).

Функции генов

В процессе реализации наследственной информации, заключенной в гене, проявляется целый ряд его свойств. Определяя возможность развития отдельного качества, присущего данной клетке или организму, ген характеризуется дискретностью действия (от лат. discretus — разделенный, прерывистый), прерывностью (интроны и экзоны). Дискретность наследственного материала, предположение о которой высказал еще Г. Мендель, подразумевает делимость его на части, являющиеся элементарными единицами, — гены. В настоящее время ген рассматривают как единицу генетической функции. Он представляет собой минимальное количество наследственного материала, которое необходимо для синтеза тРНК, рРНК или полипептида с определенными свойствами. Ген несет ответственность за формирование и передачу по наследству отдельного признака или свойства клеток, организмов данного вида. Кроме того, изменение структуры гена, возникающее в разных его участках, в конечном итоге приводит к изменению соответствующего элементарного признака.

Ввиду того что в гене заключается информация об аминокислотной последовательности определенного полипептида, его действие является специфичным. Однако в некоторых случаях одна и та же нуклеотидная последовательность может детерминировать синтез не одного, а нескольких полипептидов. Это наблюдается в случае альтернативного сплайсинга у эукариот и при перекрывании генов у фагов и прокариот. Очевидно, такую способность следует оценить как множественное, или плейотропное, действие гена (хотя традиционно под плейотропным действием гена принято понимать участие его продукта — полипептида — в разных биохимических процессах, имеющих отношение к формированию различных сложных признаков). Например, участие фермента в ускорении определенной реакции (см. рис.), которая является звеном нескольких биохимических процессов, делает зависимыми результаты этих процессов от нормального функционирования гена, кодирующего этот белок. Нарушение реакции A>B, катализируемой белком б, в результате мутации гена ведет к выключению последующих этапов формирования признаков D и E.

Определяя возможность транскрибирования мРНК для синтеза конкретной полипептидной цепи, ген характеризуется дозированностью действия, т.е. количественной зависимостью результата его экспрессии от дозы соответствующего аллеля этого гена. Примером может служить зависимость степени нарушения транспортных свойств гемоглобина у человека при серповидно-клеточной анемии от дозы аллеля НЬS. Наличие в генотипе человека двойной дозы этого аллеля, приводящего к изменению структуры в-глобиновых цепей гемоглобина, сопровождается грубым нарушением формы эритроцитов и развитием клинически выраженной картины анемии вплоть до гибели. У носителей только одного аллеля НЬS при нормальном втором аллеле лишь незначительно изменяется форма эритроцитов и анемия не развивается, а организм характеризуется практически нормальной жизнеспособностью.

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ НА ОРГАНИЗМЕННОМ УРОВНЕ. МОНОГИБРИДНОЕ СКРЕЩИВАНИЕ.

Среди биологических наук генетика занимает центральное место, поскольку изучает универсальные для всех живых существ законы наследственности и изменчивости. Все остальные свойства (рост и развитие, обмен веществ, гомеостаз и т.д.) всецело зависят от материального субстрата наследственности – ДНК.

Наследственность – свойство живых организмов обеспечивать структурную и функциональную преемственность между поколениями, а также специфический характер онтогенеза в определенных условиях среды. В ходе индивидуального развития наследственность определяет развитие и изменение морфологических, физиологических, биохимических и других особенностей организма. Наследственная преемственность между поколениями гарантирует существование вида на определенном историческом промежутке времени.

Для того чтобы полноценно определить роль наследственности необходимо четко представлять:

1. Структурную и функциональную организацию ДНК

2. Закономерности передачи наследственной информации как в ряду поколений,

так и в пределах одного организма

3. Механизмы регуляции и контроля за процессами жизнедеятельности клеток

и индивидуального развития в целом.

Изменчивость – свойство живых организмов приобретать новые признаки, отличающие их от родительских форм (строение и функции систем органов и особенности индивидуального развития).

Наследственность и изменчивость это два противоположных, но взаимосвязанных свойства организма. Элементарной единицей наследственности и изменчивости является ген (греч. «генос» -рождение, образующий). Термин был предложен в 1909г.В.Иогансеном. Ген – это участок молекулы ДНК, дающий информацию о синтезе одного полипептида.

Основными функциями ДНК – как материального носителя наследственности являются: хранение, воспроизведение и реализация наследственной информации.

Наряду с ядерными генами, локализованными в хромосомах, обнаружены факторы наследственности, расположенные в цитоплазме. Их называют плазмогенами. Установлено, что пластиды митохондрий содержат ДНК. В цитоплазме может находиться чужеродная ДНК вирусов и плазмиды бактерий. Внеядерная ДНК способна реплицироваться независимо от ядерной ДНК. Цитоплазматическое наследование идет по материнской линии, т.е. через цитоплазму яйцеклетки, т.к. сперматозоиды не привносят митохондрии в зиготу.

Критериями цитоплазматической наследственности являются:

Отсутствие количественного менделевского расщепления в потомстве.

невозможность выявить сцепление

различные результаты реципроктных скрещиваний

Геном митохондрий человека представлен кольцевой молекулой ДНК, содержащей порядка 16,5 тыс. пар нуклеотидов, в состав которой входят гены р-РНК, 22 различных т-РНк. Имеются данные, что такие пороки развития, как несращение верхних дуг позвонков, сращение нижних конечностей обусловлены мутациями митохондриальных генов.

Схема реализации гена в признак:

Признак — любое свойство или качество (биохимическое, морфологическое, иммунологическое, клиническое и т.д.), которое позволяет отличить один организм от другого. Совокупность всех внутренних и внешних признаков организма, развивающихся на основе генотипа под воздействием факторов внешней среды называется фенотипом.

Ген (участок молекулы ДНК) → иРНК → белок (фермент) →биохимические реакции→признак.

Таким образом, гены определяют развитие конкретных признаков. Поскольку в соматических клетках организма все хромосомы парные – диплоидный набор хромосом. следовательно гены тоже парные — аллельные гены. С развитием хромосомной теории наследственности выяснилось, что аллельные гены располагаются в одинаковых участках гомологичных хромосом, и кодируют один и тот же признак. Аллель определяет варианты развития одного и того же признака.

Аллельные гены обозначаются одной буквой латинского алфавита: доминантный (подавляющий) аллель – прописной (А), а рецессивный (подавляемый) – строчной (а).

Пара аллельных генов может быть одинако­ва (АА илиаа), тогда говорят, что особьгомозиготна по данному призна­ку. Если же аллельные гены в паре раз­ные(Аа), то особь по данному призна­кугетерозиготна.

Свойства гена:

— специфичность (каждый структурный ген обладает только ему присущим порядком расположения нуклеотидов и детерминирует синтез определенного полипептида)

-целостность ( при программировании синтеза полипептида ген выступает как неделимая единица)

дискретность (наличие субъединиц — нуклеотидов)

стабильность (относительно устойчивы)

лабильность (способны мутировать)

Классификация генов

Накопление знаний о структуре, функциях, характере взаимодействия и других свойствах генов породили несколько вариантов классификации генов.

1. Поместу локализации генов в структурах клетки различают расположенные в хромосомах ядра — ядерные гены и цитоплазматические гены.

2. По месту локализации генов в хромосомах различают аллельные гены и неаллельные гены (гены расположенные либо в разных локусах одной хромосомы, либо в хромосомах из разных пар. Отвечают, обычно, за развитие разных признаков и обозначатся разными символами).

3. По функциональному значению различают структурные гены. несут информацию о белках-ферментах и гистонах, о последовательности нуклеотидов в различных видах РНК. Среди функциональных генов выделяют гены- модуляторы, усиливающие или ослабляющие действие структурных генов(ингибиторы, интеграторы, модификаторы) и гены, регулирующие работу структурных генов (регуляторы и операторы ).

4. По влиянию на физиологические процессы в клетке различают летальные (активность данных генов несовместима с жизнью), условно летальные ( снижают жизнеспособность организма),протоонкогены – группа генов, регулирующих нормальное клеточное деление и дифференцировку клеток. Измененные мутацией, но активные формы протоонкогенов носят название онкогенов – способных стимулировать развитие опухолевых клеток, последние могут возникать также в результате снижения активности антионкогенов ( продукты этих генов угнетают митотическую активность клеток, участвуют в репарации ДНК и контролируют клеточный цикл).

Структурно-функциональные уровни организации наследственного материала

Геномом называют всю совокупность (генов) наследственного материала, заключенного в гаплоидном наборе хромосом клеток организма. При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором хромосом. Каждый биологический вид характеризуется определенным числом и строением хромосом, совокупность которых составляют хромосомный набор, или кариотип (полный парный набор хромосом, диплоидный набор). Все соматические клетки, независимо от их происхождения и строения (за исключением дифференцированных безъядерных клеток или полиплоидных клеток), имеют не только одинаковое число хромосом, но и идентичный набор генов.

Характерной особенностью кариотипа является наличие в нем пар гомологичных хромосом, в каждой паре одна хромосома имеют отцовское, другая — материнское происхождение. Гомологичные хромосомы характеризуются одинаковыми размерами и формой, а также специфичностью строения при дифференциальном окрашивании.

В диплоидном наборе различают аутосомы (для человека — хромосомы 1-22 пары) и половые хромосомы.

В отличие от соматических, половые клетки содержат гаплоидный набор хромосом, в котором содержится только одна хромосома из каждой пары хромосом. В генетическом плане половые клетки значительно отличаются от соматических:

1. При сперматогенезе образуются два типа сперматозоидов 50% содержат X –хромосому и 50% Y-хромосому (мужской организм у человека гетерогаметный ), при овогенезе все яйцеклетки содержат X –хромосому ( женский организм гомогаметный )

2. Половые клетки одного организма содержат различный геном, поскольку

— в результате кроссинговера возникают новые комбинации неаллельных генов в хромосоме

— независимое расхождение пар хромосом (анафаза I мейоза) приводит к возникновению различных комбинаций негомологичных хромосом в гаметах.

— случайное слияние гаплоидных клеток при оплодотворении приводит не только к восстановлению диплоидного набора, но и к возникновению комбинативной изменчивости.

Нарушения геномного уровня организации наследственного материала, т.е. изменения числа хромосом в диплоидном или гаплоидном наборе, называются геномные соматические или генеративные мутации.

1. Соматические мутации возникают в результате нарушения расхождения хроматид в анафазу митоза (гетероплоидии) либо нарушений кариокинеза (возникают полиплоидные клетки) или цитокинеза (возникают многоядерные клетки).

2. Генеративные мутации возникают в результате нарушения расхождения хромосом (анафаза I мейоза) или хроматид (анафаза II мейоза) при образовании половых клеток. При этих нарушениях сформировавшиеся гаметы содержат измененный гаплоидный набор хромосом.

Классификация генов

По функциям гены классифицируют на структурные и функциональные. Структурные гены содержат информацию о белках-ферментах, гистонах, о последовательности нуклеотидов в разных видах РНК.

Функциональные гены оказывают влияние на работу структурных генов. Функциональными являются гены-модуляторы и гены-регуляторы. Гены-модуляторы – это ингибиторы, интенсификаторы, модификаторы. Они усиливают, ослабляют или изменяют работу структурных генов. Регулируют работу структурных генов гены-регуляторы и гены-операторы .

Генотип всех соматических клеток организма одного вида одинаков. Но клетки разных тканей отличаются друг от друга. Вероятно, это связано с тем, что в них работают разные блоки генов. Область проявления действия данного гена называется полем его действия (например, распределение волосяного покрова на теле человека). Как правило, гены, детерминирующие определенные признаки, «работают» непостоянно (например, гены, определяющие синтез половых гормонов); их функция значительно снижается с возрастом. Период функционирования гена называется временем его действия .

По месту действия гены подразделяют на три группы

1) функционирующие во всех клетках (например, гены, кодирующие ферменты энергетического обмена);

2) функционирующие в клетках одной ткани (детерминирующие синтез белка миозина в мышечной ткани);

3) специфичные для одного типа клеток (гены гемоглобина в незрелых эритроцитах).

Гены выполняют в клетке две основные функции.

Гетеросинтетическая функция – это программирование биосинтеза белка в клетке.

Аутосинтетическая функция – репликация спирали ДНК (самоудвоение ДНК).

После открытия структуры ДНК долгое время полагали, что бактериальная хромосома представляет собой чистую ДНК в виде двойной спирали. Однако позднее выяснилось, что хромосома прокариот содержит в своей структуре примерно 20% белков. Их роль — обеспечить определенную компактизацию и прикрепление ДНК к оболочке бактерии. В настоящее время белки прокариотической хромосомы известны. Показано, что мутации в соответствующих генах не приводят к заметным фенотипическим проявлениям. По-видимому, роль этих белков вспомогательная, и они могут заменять друг друга в создании определенной структуры. Таким образом, прокариоты, в отличие от эукариот, не имеют высокоспециализированной системы организации хромосомы.

Хромосома эукариот состоит в основном из белков (50-60%) и ДНК, с незначительным количеством молекул РНК (до 10% от количества ДНК). Белки можно подразделить на гистоновые (половина или большая доля белков хромосомы) и негистоновые. В свою очередь гистоновые белки, доля которых в структуре хромосомы составляет до 80%, делятся на 5 основных классов: НЗ, Н4, Н2А и Н2В и Н1. Негистоновые белки (по большей части кислые, в отличие от гистонов) представлены большим количеством различных видов. Показано, что все они участвуют в образовании структур надмолекулярного уровня. Хромосомная ДНК эукариотической клетки упакована исключительно компактно. Например, самая маленькая хромосома человека — 22, содержит примерно 4.6*107 п.н. что соответствует длине 1,4 см. Во время митоза эта хромосома укорачивается до 2 мкм, т.е. становится в 7000 раз компактнее. Очевидно, чтобы достичь такой плотности упаковки и сохранить эффективность основных генетических процессов (как правило, связанных с локальной распаковкой), структура хромосомы должна иметь несколько уровней организации. Вещество хромосомы — хроматин. В этом термине подчеркивается способность вещества хромосомы к окрашиванию, видимое уже на стадии интерфазы. Химическая структура хроматина различается подлине хромосомы, а сам хроматин претерпевает различные уровни своей упаковки от интерфазы до метафазы клеточных делений.

Существуют две наиболее известные модели, объясняющие механизм упаковки хроматина. Согласно одной из них, наиболее известной в зарубежной литературе, нить ДНК претерпевает пять уровней компактизацни от 2 нм (ее собственный диаметр) до 1400 нм (высококонденсированная метафазная хромосома).

Низшим уровнем иерархической организации хромосом считается нуклеосомный. Нуклеосома состоит из кора (сердцевины, стержня) и намотанной на негоДНК(146 п.н„ 1,8 витка). Кор представляет собой гистоновый октамер Н2А, Н2В, НЗ, Н4 (по две молекулы каждого). Хроматин на этой стадии имеет вид «бусин» (глобул диаметром 11 нм), нанизанных на «нить» (молекулярную ДНК). Такая структура обеспечивает компактизацию примерно в 6—7 раз.

Вторая ступень компактизации — формирование хроматиновой фибриллы диаметром 30 нм. В этом процессе участвует гистон HI, который связывается с ДНК между нуклеосомными корами и сворачивает нуклеосомную фибриллу в спираль, наполобие соленоида, с шагом в 6-8 нуклеосом. Уровень компактизации на этом этапе достигает примерно 40.

Третий этап — петельно-доменный — наиболее сложный. Соленоидная фибрилла складывается, образуя петли различной длины. Общий уровень компак-тизации возрастает до 1000, но, очевидно, может различаться в различных районах хромосомы. Диаметр такой структуры в среднем составляет 300 нм. по-видимому, она наиболее типична для интерфазной хромосомы.

На четвертом этапе компактизации 300 нм-фибриллы дополнительно сворачиваются, образуя хроматиды диаметром примерно 600-700 нм.

Последняя, пятая, ступень компактизации (в 7000 раз) характерна для метафазной хромосомы; ее диаметр равен 1400 нм. Известна и другая схема компактизации хроматина, предложенная Ю.С. Ченцовым. Она основана на данных световой и электронной микроскопии. Согласно этой модели первым уровнем также является нуклеосомный. На втором этапе 8-Ю нуклеосом образуют глобулу, называемую нуклеомером. Ряд сближенных нуклсомеров формируют 20-30-нанометровую фибриллу. Третий уровень — хромомерный. Петли фибрилл ДНП, скрепленные негистоновыми белками, образуют розетковидные структуры. На четвертом — хромонемном уровне происходит их сближение с образованием структур, состоящих из петлевых доменов. Предполагается, что на следующем, пятом, уровне компактизации, характерном для хроматид, происходит спиральная укладка хромонемных нитей.

Классификация генов по их функциям

Альтернативный сплайсинг, биологическая роль и механизмы

Предположим, образовался транскрипт зрелой мРНК, и он может содержать экзоны 1, 2, 3. Это вовсе не означает, что он обязательно будет содержать их все. У нас может появиться РНК, которая будет содержать экзоны 1 и 2 или экзоны 1 и 3, и в результате с них будут образовываться разные белки. Такой способ процессинга (обработки) генетической информации называется альтернативный сплайсинг .

Классификация генов

У человека есть ген slo. Он «работает» во внутреннем ухе, в частности, этот белок присутствует в ворсинках, которые отвечают за распознавание высоты звука. Он состоит из 35 экзонов (на рисунке — прямоугольники), 8 из которых(синие)могут или присутствовать, или отсутствовать в зрелой мРНК. Возможны 8! = 40 320 вариантов сплайсинга, но только около 500 из них обнаружены. Других, может быть, и нет, то есть природа не должна, вообще говоря, реализовывать все возможные варианты.

Биологическая роль множественного сплайсинга заключается в следующем. Разные типы волосяных клеток внутреннего уха реагируют на звуки разных частот от 20 до 20 000 герц. Различия клеток в восприятии частоты частично определяются свойствами альтернативных сплайс-форм белка Slo. Как определяется выбор между вариантами сплайсинга неизвестно

Классификация генов

Известны случаи, когда с одного локуса образуются тысячи разных белков. К ним, в частности, относятся белки, которые образуются на поверхности нервных клеток. Таким образом, они, видимо, как-то участвуют в распознавании друг друга, и в формировании нейронных сетей. В этом случае происходит выбрасывание не только экзонов или интронов, но и может реализовываться и альтернативный участок инициации транскрипции. Такие случаи известны, в частности, для человека, когда у разных генов есть несколько разных промоторов, каждый из которых дает свою РНК, в которой, в зависимости от того, где он начался, будет дополнительный экзон, связанной с различной длиной транскрипта на 5’-конце.

Процесс соединения одного экзона с другим происходит в участках определенной последовательности нуклеотидов. Донорный сайт сплайсинга всегда заканчивается одним из двух динуклеотидов, обычно – AG.

Классификация генов

В начале происходит нуклеофильная атака донорного экзона, затем происходит разрезание, кусочек GU заворачивается и присоединяется к А. Затем разрезается вторая часть, первый экзон соединяется со вторым, и образуется интрон.

Классификация генов

Если посмотреть, какую долю гена составляют экзоны, то самый большой известный транскрипт (у гена миодистрофина) имеет длину около 2,5 миллионов нуклеотидов. У него в зрелую часть РНК переходит 14 тыс нуклеотидов (0,6%), а остальные 99,4% от первичного транскрипта выкидывается (интроны).

С ростом размеров гена в хромосоме его белок-кодирующая часть увеличивается незначительно, а количество интронов в гене растет. С ростом числа интронов растет число сайтов сплайсинга и вероятность их повреждения. Поэтому для генов с большим числом интронов потеря функции при мутации может быть связана не с белок- кодирующей частью ДНК, а с регуляторными элементами сплайсинга.

Секвенирование генома человека показало, что некоторые экзоны многократно повторены в геноме. Это могут повторы экзонов в составе одного гена, или присутствие одного и того же экзона в составе нескольких разных генов. Получается, что экзоны, основные элементы структуры РНК, то есть белок-кодирующие элементы, в процессе эволюции могут каким-то образом размножаться в геноме и «перетасовываться» между разными генами. Такое явление получило название exon shuffling – перетасовка экзонов. Ниже показаны разные белки, в которых содержатся одинаковые экзоны. Таким образом, оказывается, что эволюция – это нередко именно блоковые изменения генома, а не точечные изменения.

Классификация генов

Классификация генов по их функциям

На 2001 год для более 40% генов человека не было никаких предположений относительно выполняемых функций. А для остальных раскладка была достаточно условной. Принадлежность белка к одному функциональному классу не исключает его принадлежности также и к другому классу. Например, то что белок связывается с ДНК, не означает, что он не может быть еще и ферментом и т.д. Это — характеристика, которая была дана гену по той его части, которая связана с охарактеризованной функцией, но, вообще говоря, такая функция у белка может быть и не одна.

Классификация генов

Больше всего генов отвечают за экспрессию, репликацию и поддержание функций генома; около 20% — за передачу сигналов между клетками, около 17% — за то, чтобы клетка сама по себе была здорова, и для других функции не классифицированы.

Классификация генов

Оказывается, что у человека, по сравнению с дрожжами, бактериями и т.д. в геноме имеется больше генов регуляторов транскрипции. То есть, транскрипционные регуляторы сильно размножились в эволюционной линии млекопитающих, в частности, человека. Предполагается что разнообразие регуляторов транскрипции обеспечивает большую тонкость реакции генома на сигналы внешней среды. То есть у млекопитающих больше число ансамблей координировано транскрибируемых генов, чем в других группах.

Классификация генов

Ниже показано, как выглядит кусок генома человека (≈50 000 п.н.). Около половины длины этого фрагмента ДНК занимают элементы, структура и функция которых понятна. Среди этих элементов есть гены (экзоны и интроны) и псевдогены — есть гены функциональные, а есть их нефункциональные копии. Они, обычно, не содержат интронов (считается, что после транскрипции и при преобразовании зрелой РНК возможен процесс встраивания ее обратно в геном в виде ДНК-копии; тогда это будет ген, содержащий лишний «хвост» и не содержащий интронов). А также короткие (SINE) и длинные (LINE) диспергированные повторы, длинные концевые повторы (LTR) – следы, оставшиеся после транспозиции, транспозоны, микросателлиты.

Классификация генов

К 2001 году в геноме человека было выявлено 1112 “генов болезней” (то есть таких, мутации в которых ведут к заболеванию) и еще есть 94 “составных” гена, образующихся при опухолевых перестройках генома. Пока, в основном, раскрыты по механизму те заболевания, которые затрагивают белок-кодирующую часть гена. Возможно, не меньшее количество мутаций, вызывающих болезни, будет найдено и в участках регуляции транскрипции, сплайсинга и стабильности РНК.

Классификация генов

По представлениям на март 2005 года, у человека 24000 белок-кодирующих генов, из них 1700 генов ассоциированы с заболеваниями. Обнаружено 44,500 мутаций в этих 1700 генах (в среднем 26 на ген), связанных к заболеваниям. А для остальных 10 000 000 известных мутаций подобная связь не выявлена.

20% смертей в США происходит из-за того, что прием лекарства осуществлялся либо не того, либо не так. Но это связано не с некомпетентностью врачей, а с тем, что мы все генетически разные. У болезней много мишеней и если бить не по той мишени, то лекарство точно не будет полезным, а потому может быть и вредным. У человека может быть специфическая реакция на данное лекарство (слишком низкая или слишком высокая скорость метаболизма). А в нашей стране ведущая пока причина смертей взрослого населения – пьянство. Эта первопричина просто скрыта за определением «травматизм» (производственный, бытовой, дорожный и т.д.), который и указывают как причину смерти. Выявлена корреляция потребления алкоголя в нашей стране и продолжительности жизни: когда, снижается потребление алкоголя, продолжительность жизни идет вверх, и наоборот.

Если два белка характеризуются сходной последовательностью аминокислотных остатков (выше критической длины, до которой совпадения могут быть чисто случайными), то у них есть общая предковая последовательность, и соответствующий предковый ген. Количество таких предковых структур у белков весьма ограничено.

К примеру, был один ген в геноме, а потом их стало два (дупликация). Со временем мутации изменили эти гены каждый по-своему. А потом этот вид дал начало двум новым видам (см. рис. ниже). Все эти гены являются «родственниками» (гомологами), но по-разному называются. Гомологичные гены, которые мы рассматриваем в составе разных видов, называются ортологи, а гомологичные гены в одном геноме называют паралоги.

Классификация генов

Сравнения таких родственных генов часто используют при исследовании эволюции. Эволюционная геномика (сравнительная геномика), используется очень интенсивно в медицине. Пример ее практического применения. У людей по разным причинам бывает ожирение. В частности, есть семейные формы, менделирующие. У человека мутации, вызывающие это заболевание, картированы не были. Сходный фенотип ожирения наблюдали у мышей. У мышей этот ген генетически картировали (картируют, на самом деле, не ген, а собственно мутацию в гене). Просеквенировали участок вокруг этой мутации, потом нашли такую же последовательность нуклеотидов в геноме человека. Стало ясно, в каком месте генома человека надо искать мутации, вызывающие ожирение у человека. Проверка этого участке генома человека у больных людей и сравнение его со той же нуклеотидной последовательностью у здоровых подтвердила, что мутации этого гена у человека, как и у мыши, приводят к ожирению.

Классификация генов

Классификация генов

Классификация генов

Накопление знаний о структуре, функциях, характере взаимодействия и других свойствах генов породили несколько вариантов классификации генов.

1. По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра ядерные гены и цитоплазматические гены, локализация которых связана с митохондриями.

2. По месту локализации генов в хромосомах различают аллельные и неаллельные гены.

3. По функциональному значению различают структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены — последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия структурного гена (ингибирование, повышение активности и др.). К структурным генам также относят гены, кодирующие тр-РНК и р-РНК.

4. По влиянию на физиологические процессы в клетке различают летальные, условно летальные, гены-мутаторы, гены-антимутаторы и др. Следует отметить, что любые биохимические и биологические процессы в организме находятся под генным контролем. Так, деление клеток (митоз, мейоз) контролируется несколькими десятками генов; группы генов осуществляют контроль восстановления генетических повреждений ДНК (репарация). Онкогены и гены — супрессоры опухолей участвуют в процессах нормального деления клеток. Индивидуальное развитие организма (онтогенез) контролируется многими сотнями генов.

Разделение генов на определенные функциональные группы имеет практическое значение. Мутации определенного гена приводят к специфическим последствиям, которые полностью зависят от функции данного гена. В биологии есть понятия: «канцероген» и «тератоген», в первом случае это факторы, вызывающие развитие опухоли, во-втором – факторы, приводящие к возникновению аномалий и пороков развития. Один и тот же фактор может быть одновременно и канцерогеном, и тератогеном. Последствия воздействия фактора будут определяться функцией измененного гена.

В настоящее время достаточно хорошо изучены закономерности передачи наследственной информации между поколениями, механизмы комбинативной изменчивости, причины и последствия нарушений гаметогенеза. Поэтому основные усилия современных генетиков направлены на изучение механизмов регуляции и контроля за процессами индивидуального развития. А перспективы подобных исследований огромны: терапевтическое клонирование, лечение наследственных заболеваний, лечение опухолей, борьба инфекционными болезнями и т.д.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *