Кавитация в насосах

Кавитация в насосах и меры борьбы с ней.

Кавитация — это нарушение сплошности жидкости, которое происходит в тех участках потока, где давление понижаясь, достигает некоторого критического значения. Этот процесс сопровождается образованием большого числа пузырьков, наполненных преимущественно парами жидкости, а так же газами, выделившимися из раствора. Находясь в области пониженного давления, пузырьки увеличиваются и превращаются в большие пузыри-каверны. Затем эти пузыри уносятся потоком в область с давлением выше критического, где разрушаются практически бесследно вследствие конденсации заполняющего их пара. Т.о. в потоке создается довольно четко ограниченная кавитационная зона, заполненная движущимися пузырьками.

Критическое, с точки зрения возникновения кавитации, давление определяется физическими свойствами жидкости и в зависимости от ее состояния может меняться в довольно значительных пределах. Тем не менее в практических расчетах, связанных с рассмотрением кавитационных режимов работы насосов, в качестве критического давления, при котором начинается кавитация, обычно принимают давление насыщенных паров перекачиваемой жидкости при данной температуре.

Элементы проточной части гидравлических машин вообще и лопастных насосов в частности представляют собой сочетание направляющих поверхностей, предназначенных для управления потоком. Если кавитационная зона возникает на такой поверхности, то она изменяет ее эффективную форму и, следовательно, изменяет путь потока. Такие изменения нежелательны и сопровождаются дополнительными потерями энергии. Снижение энергетических параметров (подача, напор) и уменьшение КПД являются прямым следствием возникновения кавитации в любой гидравлической машине.

Неустойчивость кавитацилнной зоны и вызванные появлением этой зоны вторичные течения жидкости приводят к значительным пульсациям давления в потоке, которые оказывают динамическое воздействие на поверхности, направляющие поток. Результаты многочисленных экспериментальных исследований и опыт эксплуатации различного гидравлического оборудования указывают на появление сильных вибраций при возникновении кавитации.

Разрушение, или как принято говорить, «захлопывание» кавитационных пузырей при переносе их потоком в область давления выше критического происходит чрезвычайно быстро и сопровождается своего рода гидравлическими ударами. Наложение большого числа таких ударов приводит к появлению характерного шипящего звука, который всегда сопутствует кавитации.

И наконец, кавитация в большинстве случаев сопровождается разрушением поверхности, при которой возникают и некоторое время существуют каветационные пузыри. Это разрушение, являющееся одним из самых опасных последствий кавитации, называют кавитационной эрозией. Механическое повреждение рабочих органов гидравлических машин в результате кавитационной эрозии могут за относительно короткий срок достигнуть размеров, затрудняющих нормальную эксплуатацию машин и даже делающих ее практически невозможной.

Возникновение и последующее развитие кавитации в лопастных насосах является следствием уменьшение абсолютного давления в потоке жидкости.

Зная причины общего и местного понижения давления, мы можем предугадать, а в большинстве случаев и предотвратить появление кавитации в тех или иных элементах проточной части насоса. Следует сразу сказать, что правильный выбор высоты всасывания с учетом геодезической отметки расположения насоса и температуры перекачиваемой жидкости является первым и наиболее надежным мероприятием, направленным на ослабление и предотвращение кавитации. Создание некоторого запаса путем уменьшения высоты всасывания или увеличения подпора по сравнению с подсчитанными величинами гарантируют, как правило, надежную безкавитационную работу насоса.

Для нормально безкавитационной работы насоса необходимо, что бы давление Р1 на входе в насос было больше критического, в качестве которого принимают давление Рпар насыщенных паров перекачиваемой жидкости ( Р1 >Рпар). В противном случае в местах падения давления ниже Рпар начинается кавитация и работа насоса ухудшается.

Кавитация в насосах. Допустимое значение высоты всасывания

Кавитация — это нарушение сплошности жидкости, которое происходит в тех участках потока, где давление, понижаясь, достигает некоторого критического значения. Э(гот процесс сопровождается образованием большого числа пузырьков, наполненных преимущественно парами жидкости, а также газами, выделившимися из раствора. Находясь в области пониженного давления, пузырьки увеличиваются и превращаются в большие пузыри-каверны. Затем эти пузыри уносятся потоком в область с давлением выше критического, где разрушаются практически бесследно вследствие конденсации заполняющего их пара. Таким образом, в потоке создается доврльно четко ограниченная кавитационная зона, заполненная движущимися пузырьками.

Критическое, с точки зрения возникновения кавитации, давление определяется физическими свойствами жидкости и в зависимости от ее состояния может меняться в довольно значительных пределах. Тем не менее в практических расчетах, связанных с рассмотрением кавитационных режимов работы насосов, в качестве критического давления, при котором начинается кавитация, обычно принимают давление насыщенных паров перекачиваемой жидкости при данной температуре. Классическим примером является возникновение кавитации на обтекаемом потоком профиле. Вызванное отклонением линий тока понижение давления на выпуклой поверхности профиля в районе точки А может привести к образованию кавитацион-ной зоны, протяженность которой X зависит от плотности р0, давления р0 и скорости v0 набегающего потока, формы профиля и угла атаки.

качественное изменение структуры потока, вызванное кавитацией, приводит к изменениям режима работы гидравлической машины. Эти изменения принято называть последствиями кавитации.

Элементы проточной части гидравлических машин вообще и лопастных насосов в частности представляют собой сочетание направляющих поверхностей, предназначенных для управления потоком. Если кавитационная зона возникает на Такой поверхности, то она изменяет ее эффективную форму и, следовательно, изменяет путь потока. Такие изменения нежелательны и сопровождаются дополнительными потерями энергии Снижение энергетических параметров (подача, напор) и уменьшение коэффициента полезного действия являются прямым следствием возникновения кавитации в любой гидравлической машине.

Неустойчивость кавитационной зоны и вызванные появлением этой зоны вторичные течения жидкости приводят к значительным пульсациям давления в потоке, которые оказывают динамическое воздействие на поверхности, направляющие поток. Результаты многочисленных экспериментальных исследований и опыт эксплуатации различного гидравлического оборудования указывают на появление сильных вибраций при возникновении кавитации.

Разрушение, или, как принято говорить, «захлопывание» кавита-ционных пузырей при переносе их потоком в область с давлением выше критического происходит чрезвычайно быстро и сопровождается своего рода гидравлическими ударами. Наложение большого числа таких ударов приводит к появлению характерного шипящего звука, который всегда сопутствует кавитации.

И наконец, в большинстве случаев кавитация сопровождается разрушением поверхности, на которой возникают и некоторое время cyiuecTL вуют кавитационные пузырн. Это разрушение, являющееся одним из самых опасных последствий кавитации, называют кавитационной эрозией. Механические повреждения рабочих органов гидравлических машин в результате кавитационной эрозии могут за относительно короткий срок достигнуть размеров, затрудняющих нормальную эксплуатацию машин и даже делающих ее практически невозможной.

Возникновение и последующее развитие кавитации в лопастных насосах является следствием уменьшения абсолютного давления в потоке жидкости. Рассмотрим, как меняется давление воды при ее движении по проточному тракту лопастного насоса от входа во всасывающий трубопровод и до рабочего колеса. В качестве примера на 2.9 справа изображен вертикальный центробежный насос с прямоосной цилиндрической всасывающей трубой, в центре дан график изменения абсолютного давления в зависимости от значений различных параметров. Давление на входе во всасывающую трубу вследствие ее заглубления под уровень свободной поверхности в приемном резервуаре превышает атмосферное давление р„ на значение гидростатического давления р„. Местные потери энергии, связанные с преодолением гидравлического сопротивления входного устройства всасывающей трубы и увеличением скоростного напора v2/(2g), приводят к тому, что уже в сечении трубы, расположенном на уровне свободной поверхности, абсолютное давление в потоке будет меньше атмосферного. Местные потери в переходном конусе всасывающего трубопровода в сочетании с увеличением скоростного напора вызывают дальнейшее уменьшение давления, абсолютное значение которого на входе в насос может стать меньше давления насыщенных паров рвар. Кроме того, в лопастных насосах давление может дополнительно понизиться, что в значительной мере увеличит опасность возникновения кавитации. Это понижение, не предусмотренное рабочим процессом, может носить общий характер или быть вызвано какими-то местными изменениями в потоке. Низкое абсолютное давление и кавитация могут также наблюдаться при неустановившихся режимах работы насоса: гидравлическом ударе в системе, режиме пуска, остановки и т. п.

Зная причины общего и местного понижения давления, мы можем предугадать, а в большинстве случаев и предотвратить появление кавитации в тех или иных элементах проточной части насоса. Следует сразу сказать, что правильный выбор высоты всасывания с учетом геодезической отметки расположения насоса и температуры перекачиваемой жидкости является первым и наиболее надежным мероприятием, направленным на ослабление или предотвращение кавитации. Создание некоторого запаса путем уменьшения высоты всасывания или увеличения подпора по сравнению с подсчитанными величинами гарантирует, как правило, надежную бескавитацион-ную работу насоса.

КАВИТАЦИЯ В НАСОСАХ

Вращение рабочего колеса отбрасывает жидкость к поверхности корпуса насоса, в результате чего со стороны всасывающей полости рабочего колеса возникает разряжение. Разряжение зависит от разницы между уровнем положения впускного отверстия и поверхности перекачиваемой жидкости, от потерь давления на трение во всасывающем трубопроводе, а также от плотности самой жидкости. Это разряжение ограничено давлением насыщенного пара жидкости при данной температуре, т.е. давлением, при котором будут образовываться пузырьки пара.

Кавитацией называют процессы нарушения сплошности (однородности) потока жидкости, происходящие в тех участках, где местное давление понижается и достигает определённого критического значения. Обычно в качестве критического давления, при котором начинается кавитация, принимают давление насыщенных паров перекачиваемой жидкости при данной температуре. При возникновении кавитации происходят такие процессы.

· В тех местах потока, где давление падает до критического, образуется большое количество пузырьков, заполненных парами жидкости и газами, которые выделяются из жидкости. Находясь в зоне пониженного давления, пузырьки увеличиваются в размерах и перерастают в большие кавитационные каверны.

· В тех зонах, где образовались каверны, изменяется эффективная форма проточной части насоса, что вызывает местное повышение скорости движения жидкости и увеличение потерь напора. Это ухудшает энергетические параметры насоса и снижает его коэффициент полезного действия.

· Нестойкость кавитационной зоны вызывает пульсацию давления в потоке, Под действием этой пульсации может возникать вибрация насоса.

· Кавитационные пузыри захватываются потоком жидкости и переносятся в зону повышенного давления. Там они очень быстро разрушаются. Это приводит до гидравлических микроударов. Наложение большого числа таких ударов приводит к появлению характерного шипящего звука, который всегда сопутствует кавитации.

· Кавитация приводит к разрушению поверхности, на которой она возникает. Это разрушение, являющееся одним из самых опасных последствий кавитации, называют кавитационной эрозией. Очень разрушаются чугун и углеродная сталь. Известны случаи, когда рабочие колеса гидромашин, лопасти гребных винтов из-за кавитации приходили в полную негодность через несколько сотен часов работы.

Предотвратить явление кавитации возможно при условии правильного выбора геометрической высоты всасывания с учетом геодезической отметки расположения насоса и температуры перекачиваемой жидкости.

Наибольшее значение геометрической высоты всасывания при условии Р1 = Рпар. .

Кавитации в насосе не будет, если вакуумметрическая высота всасывания не превышает допустимого значения Нвак Нв.доп.

Отсюда отсутствие кавитации в насосе определяется условием . Значения ( )пасп. указываются на характеристиках насосов для нормального атмосферного давления на уровне Балтийского моря и для температуры воды 20 0 С.

Если насосная установка проектируется для местности, где атмосферное давление отличается от нормального и температура воды больше 20 0 С, то паспортную величину ( )пасп следует уточнить по формуле:

В зависимости от высоты над уровнем моря величину Натм можно взять из таблицы 1.

В некоторой технической литературе учет изменения атмосферного давление над нормальным определяется приближенно по формуле

. где — абсолютная отметка уровня воды в нижнем бассейне, м (выше уровня моря . ниже — ).

С учетом отметки местности установки насоса и температуры перекачиваемой жидкости, геометрическая высота всасывания определяется по формуле

Задача. Определить геометрическую высоту всасывания для насоса, если известно: насос планируется установить в местности, которая находится на высоте 1000 м над уровнем моря, температура перекачиваемой жидкости 60 0 С. Потери напора во всасывающем трубопроводе составляют 0,75 м, ск0рость движения воды во всасывающем трубопроводе – 3 м/с.

Решение задачи. Из таблиц 1 и 2 находим, что атмосферное давление на высоте 1000 м над уровнем моря Натм = 9,2 м. вод. столба, а давление насыщенного пара воды при температуре 60 0 — = 2,02 м. вод. столба.

Полученный результат показывает, что насос следует расположить ниже уровня воды в заборном резервуаре не менее чем на 0,53м.

Для бескавитационной работы насоса необходимо обеспечить условия, при которых давление при входе в насос P1 было бы больше критического, т.е. больше давления насыщенных паров перекачиваемой жидкости PПАР.

Для исключения явления кавитации необходимо, чтобы удельная энергия Э1 потока во входном патрубке насоса, отнесенная к его оси, должна быть достаточной для обеспечения скоростей и ускорений в потоке при входе в насос и преодоление сопротивлений без падения местного давления до значения, ведущего к образованию кавитации.

Параметр Dh называется кавитационным запасом или избыточным напором всасывания. Кавитационный запас представляет собой превышение механической энергии в потоке над давлением насыщенного пара.

Используя уравнение, . установим взаимосвязь между кавитационным запасом Dh и геометрической высотой всасывания HS .

Сравнивая полученное уравнение с зависимостью . получим . (33)

Для инженерных расчетов формула упрощается

Для каждого насоса существует некоторое минимальное значение . Если он будет меньше . то насос начнёт кавитировать. Минимальный кавитационный запас определяется на специальном испытательном стенде путём построения зависимостей напора, КПД и мощности насоса от кавитационного запаса Dh. На рис.(4.1) представлена схема кавитационного стенда.

Испытания проводят при постоянной частоте вращения. Насос устанавливается на вполне определенный режим с помощью вентиля 1. Этому режиму соответствуют определенные значения расхода, напора, мощности и КПД. Изменение Dh осуществляют путем уменьшения давления на свободную поверхность жидкости.

В замкнутой системе снижение давления Р1 приводит к уменьшению давления в системе.

Рис. 9. испытательный стенд

До определенного значения Dh. подача, напор и КПД остаются постоянными (рис. 10.), после чего Q, H и начинают снижаться, в насосе появляется шум, что свидетельствует о наличии кавитации.

Рис. 10. Частные кавитационные характеристики

При дальнейшем уменьшении Dh наступает резкое снижение Q, H и . насос срывается. За критическую (минимальную) величину кавитационного запаса Dhкр принимается такая, при которой кончаются горизонтальные участки значений Q, H и .

Допустимый кавитационный запас должен быть больше критического Dhдоп. = Dhкр К, (35)

где К коэффициент запаса, обычно равный 1,2…1.5.

Нетрудно заметить, что наименьшему значению соответствует наибольшее критическое значение геометрической высоты всасывания:

Для обеспечения надежной работы насоса высота всасывания Нs.доп. должна иметь некоторый запас, что учитывается введением коэффициента запаса:

Кавитационные характеристики позволяют установить начало влияния кавитации на энергетические характеристики машины, однако они не дают возможность уловить зарождение кавитации. Практика подтверждает, что эрозия начинается задолго до снижения энергетических характеристик. Перспективным методом, с помощью которого можно установить момент зарождения кавитации является виброакустический метод.

Кавитация в насосах

Понятие кавитации

Явления, происходящие в насосе при парообразовании в начальной стадии и вплоть до прекращения (срыва) работы, имеют общее название кавитации.

Кавитация представляет собой сложный комплекс следующих явлений:

· выделение пара и растворенных газов из жидкости в тех областях, где давление жидкости равно или меньше давления насыщенных паров ее;

· местное повышение скорости движения жидкости в том месте, где возникло парообразование, и беспорядочное движение жидкости;

· конденсация пузырьков пара, увлеченных потоком жидкости в область повышенного давления. Конденсация каждого из пузырьков приводит к резкому уменьшению объема и гидравлическому удару в микроскопических зонах; однако «бомбардировка» этими ударами большой площади кавитируемой поверхности приводит и к большим площадям разрушения. Многократно повторяющиеся механические воздействия при конденсации пузырьков вызывают механический процесс разрушения материала колеса, что является наиболее опасным следствием кавитации;

· химическое разрушение металла в зоне кавитации кислородом воздуха, выделившегося из жидкости при прохождении ее в зонах пониженного давления. Этот процесс носит название коррозии. Коррозия, действующая одновременно с цикличными механическими воздействиями, снижает прочность металла.

Кавитация, может происходить не только в рабочем колесе, но и в направляющем аппарате или в спирали, хотя здесь она наблюдается сравнительно редко. Явления кавитации сопровождаются характерным потрескиванием в области всасывания, шумом и вибрацией насоса.

Кавитация в насосах

Рисунок 2 — кавитация в насосе.

Последствия кавитации

Кавитация уменьшает КПД, напор и производительность насоса. При сильном развитии кавитации центробежный консольный насос полностью прекращает работу (срывает подачу). Длительная работа насоса при наличии даже незначительных кавитационных явлений совершенно недопустима. Особенно сильно при кавитации повреждаются детали насосов, если перекачивается вода, содержит твердые включения.

От действия кавитации поверхности деталей становятся шероховатыми и губчатыми, что способствует быстрому истиранию деталей содержащимися в жидкости включениями. В свою очередь твердые частицы, истирая поверхности деталей, содействуют усилению кавитации. Особенно сильно кавитационному разрушению подвержены чугун и углеродистая сталь. Наиболее устойчивы в этом отношении насосы из нержавеющей стали и бронзы.

Кавитация в насосах

Рисунок 3 — последствия кавитации.

Пути устранения кавитации

1. Размещение гидробака выше всасывающей камеры насоса.

Как известно из опыта эксплуатации гидрофицированных самоходных машин, объемные насосы на самовсасывании работают крайне неудовлетворительно или не работают вообще, особенно в период пуска машины при низких температурах, когда в десятки и сотни раз повышается вязкость жидкости. Поэтому на всех современных гидрофицированных машинах различного технологического назначения гидробак устанавливают выше насоса так, что свободная поверхность жидкости в гидробаке не менее чем на 0,5 м выше всасывающей камеры насоса. Гидравлическое сопротивление всасывающего трубопровода не позволяет обеспечить полное заполнение рабочих камер насоса, поэтому размещение гидробака выше всасывающей камеры позволяет создать перед насосом давление выше атмосферного на величину h·g·?, где h — высота всасывания; g — ускорение свободного падения; ? — плотность жидкости.

Однако, следует помнить, что размещать гидробак на величину выше 0,5 м над всасывающей камерой нецелесообразно, так как после распределителя на эту же высоту приходится поднимать поток жидкости, что увеличивает давление в сливной гидролинии, снижает полезное усилие на гидродвигателях и ведет к перерасходу топлива двигателя внутреннего сгорания. В конечном итоге снижается общий КПД гидропривода.

2. Увеличение диаметра всасывающего трубопровода.

Позволяет несколько повысить всасывающую способность за счет снижения его гидравлического сопротивления. Расчеты и опыт эксплуатации показывают, что кардинально повысить всасывающую способность насосов за счет увеличения диаметра трубы не удается, тем более существует предел этого увеличения по конструктивным соображениям. Максимальный диаметр всасывающего трубопровода можно получить расчетом, приняв скорость потока жидкости в трубе, равную 0,8 м/с.

3. Уменьшение длины всасывающего трубопровода.

Также позволяет повысить всасывающую способность насосов за счет снижения путевых потерь гидролинии. Протяженность всасывающего трубопровода зависит от места и способа крепления насоса к двигателю внутреннего сгорания и месторасположения гидробака. При проектировании гидропривода следует на стадии компоновки гидрооборудования учитывать требования к минимальной длине трубопровода. По соображениям повышения всасывающей способности насосов в гидроприводе станков последние размещают непосредственно в гидробаке. Применительно к самоходным гидрофицированным машинам такое конструктивное решение выполнить невозможно. На лесозаготовительных машинах протяженность всасывающего трубопровода достигает от 2,5 м (лесоукладчики) до 3,5 м (валочнопакетирующие машины).

4. Снижение местных сопротивлений.

Также способствует повышению всасывающей способности насосов, причем существенно больше, чем уменьшение длины трубопровода. Это подтверждается данными наших экспериментальных исследований. Во всасывающей гидролинии не должно быть обратных клапанов, фильтров, изгибов под прямым углом, ответвлений и других местных сопротивлений.

5. Увеличение площади и изменение формы всасывающего отверстия.

Позволяет существенно повысить всасывающую способность насосов. Обычно на современных машинах всасывающий патрубок имеет срез под прямым углом. Это упрощает технологию и стоимость изготовления. Однако прямой срез не исключает вихревых явлений жидкости при входе ее во всасывающее отверстие, что создает дополнительное гидравлическое сопротивление и, как следствие, способствует развитию кавитации при более высоком давлении во всасывающей камере, снижает объемный КПД и подачу насосов.

Увеличить площадь всасывающего отверстия при одинаковом диаметре можно за счет применения скошенного под углом 30 — 45 °С патрубка. Такое простое конструктивное решение позволяет в 1,4 — 1.6 раза увеличить площадь всасывающего отверстия, существенно снижает вихревые явления и все отрицательные последствия, с ними связанные.

Однако кардинально повысить всасывающую способность насоса можно за счет применения патрубка коноидальной формы. Такие патрубки позволяют использовать кинетическую энергию потока жидкости, создавать во всасывающей камере насоса избыточное давление и повышать всасывающую способность насоса.

6. Применение гидробаков с давлением выше атмосферного.

Значительно увеличивает всасывающую способность насосов. Для создания избыточного давления в гидробаке чаще всего используют компрессор. Однако это требует введения дополнительного привода от вала отбора мощности к компрессору и создания автономной системы управления. Видимо, это слишком высокая цена для повышения всасывающей способности насосов, поэтому такой способ применяется пока только на одной серийной машине — экскаваторе ЭО-4332А и его модификациях. Такой же эффект можно получить, применив эластичную мембрану или подпружиненный поршень, которые позволяют компенсировать изменение объема жидкости в баке, возникающего при колебании температуры и за счет разницы объема поршневой и штоковой полостей гидроцилиндров. При этом могут возникнуть лишь затруднения с удалением из гидробака выделившейся из жидкости газовой фазы. Более простое конструктивное решение использование эластичной герметичной полости в верхней части гидробака, которая может создавать за счет изменения объема жидкости избыточное давление.

7. Применение эжекции во всасывающем трубопроводе.

Дает возможность повысить всасывающую способность насоса за счет использования кинетической энергии струи жидкости. Направление всего потока жидкости или его части позволяет создать избыточное давление во всасывающей камере насоса. На рис. 1 представлена упрощенная схема использования эжекции для повышения всасывающей способности насоса. Перед фильтром за счет его гидравлического сопротивления давление жидкости составляет не менее 0,35 МПа, а при понижении температуры (повышении вязкости) и засорении фильтроэлемента оно значительно увеличивается. Это давление можно использовать для направления части потока непосредственно во всасывающую линию насоса. Таким образом, такое простое конструктивное решение позволяет практически полностью избежать кавитационного режима работы насоса.

Кавитация в насосах

Рисунок 4 — применение эжекции во всасывающем трубопроводе.

8. Оптимизация вязкости рабочей жидкости.

Кардинально решает проблемы работоспособности и эффективности гидравлического привода, в том числе повышает и всасывающую способность насосов. Чем меньше вязкость рабочей жидкости, тем меньше гидравлические сопротивления (местные и путевые) и потери давления во всасывающем трубопроводе. Экспериментально установлено, что вязкость жидкости должна находиться в пределах (10 — 65)·10 6 м?/с для гидроприводов с аксиально-поршневыми насосами, и (50 — 2500)·10 6 м?/с для гидроприводов с шестеренными насосами. Для поддержания вязкости в указанном оптимальном диапазоне гидропривод самоходных машин, эксплуатируемых на открытом воздухе, должен иметь специальные теплообменные устройства.

9. Уменьшение шероховатости внутренней поверхности всасывающего трубопровода.

Также позволяет несколько повысить всасывающую способность насосов, особенно при низких температурах, когда шероховатость оказывает большее влияние на коэффициент трения вязкой жидкости. Изготовление всасывающих трубопроводов из пластмасс практически решает эту проблему.

10. Дегазация рабочей жидкости.

Почти полностью исключает кавитационный режим работы насосов и существенно повышает их всасывающую способность, особенно при оптимальных температурах рабочей жидкости. Однако до настоящего времени дегазация рабочих жидкостей в гидроприводе самоходных машин не применяется. Это объясняется отсутствием достаточно простых устройств дегазации, способных надежно работать в различных климатических условиях.

Кавитация в насосах

Явление кавитации. Кавитация в насосах.

В результате эксплуатации насосной системы в условиях низких атмосферных давлений, либо при перекачивании высокотемпературных жидкостей, либо при высоте всасывания выше допустимой, в трубопроводе может возникнуть явление кавитации, сопровождаемое характерной вибрацией, потрескиванием, шипением и прочими шумами внутри насоса и ведущее к быстрому износу его рабочего колеса.

В перекачиваемой рабочей жидкости в некоторых участках трубопровода давление потока может понизиться до критического, из-за чего в сплошном потоке образуются множественные пузырьки паров и газов, выделяемых жидкостью, которые под действием разряжения разрастаются до больших пузырей-каверн. Попадая затем в области с давлением выше критического, эти каверны лопаются и бесследно исчезают в результате конденсации. Захлопывание пузырей происходит очень быстро и сопровождается гидравлическими ударами, ведущими к кавитационной эрозии, механически разрушающей поверхности рабочих деталей насосного оборудования и затрудняет его дальнейшую эксплуатацию.

Заполненный движущимися пузырьками участок называется кавитационной зоной, которая обычно образуется при уменьшении давления жидкости у входа в рабочее колесо ниже давления упругости пара. Напор рабочей жидкости снижается иногда до полного прекращения ее подачи, в результате чего резко уменьшается производительность (к.п.д.) насосного агрегата.

Для того, чтобы гарантированно исключить возможность возникновения кавитации, на каждого насоса рассчитываются кавитационные характеристики.

Критическое давление меняется в широком диапазоне в зависимости от состояния и физических свойств перекачиваемой жидкости, поэтому для определения кавитационных характеристик за критическое принимается давление паров жидкости при конкретной температуре.

Предотвратить кавитацию в проточной части насосной системы можно с учетом причин общего и местного снижения давления. Но более надежным способом ослабления и полного предотвращения кавитации является оптимальный геодезический расчет места установки насоса и соответствующие ему выбор высоты всасывания и температура перекачиваемой жидкости. Уменьшая высоту всасывания или увеличивая подпор по сравнению с расчетными значениями, можно создавать определенный запас, который гарантирует надежной и бесперебойной работы насосной системы без кавитации.

Максимальной прочностью к последствиям кавитации обладают насосы, изготовленные из бронзы или нержавеющей стали, с применением специальных защитных покрытий наиболее подверженных стиранию и воздействию кавитации деталей. В виде покрытий применяется местная поверхностная закалка, наплавка поверхностей твердыми сплавами и металлизация поверхностей в холодном состоянии.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *