Виды теплообмена

ОСНОВНЫЕ ВИДЫ ТЕПЛООБМЕНА

Определение 3. Теплопередача «зиждется9quot; на трёх китах, т.е. существует всего три способа или механизма передачи теплоты: теплопроводность, конвекция и излучение.

Теплообмен – это сложный процесс. Однако ради простоты изучения принято различать три элементарных вида теплообмена. Здесь использован древний совет: DIVIDE ET IMPERA – дивиде эт импэра (лат.) – разделяй и властвуй.

1) Теплопроводность или кондукция (conduction – проводник) определяется тепловым движением микрочастиц тела (молекул, атомов, ионов, электронов и т.д.). Пример с нагревом стержня с одной стороны. За счет чего нагревается холодный конец стержня? Здесь происходит обмен энергией путём столкновений. В металлах за счет движения свободных электронов и ионов решетки. В твердых диэлектриках и жидкостях – за счет переноса упругих звуковых волн, т.е. движения фононов. В газах – за счет диффузии молекул.

Теплопроводность характерна в основном для твёрдых, реже жидких тел.

В 1807году Фурье выдвинул гипотезу, что тепловой поток теплопроводностью пропорционален температурному градиенту, т.е. что Q

2) Конвекция – это процесс передачи тепла из одной части пространства в другую перемещающимися макроскопическими объёмами жидкости или газа. Название произошло от английского «convection9quot;, что означает перемешивание. В зависимости от причины, вызывающей движение различают:

Свободная (естественная) конвекция происходит за счёт разности плотностей Dr неравномерно нагретой среды, обусловленной согласно определению 2 разностью температур Dt. (Примеры свободной конвекции – отопление помещения, песок на летнем пляже (можно видеть марево – движение воздуха от нагретого песка), пламя свечи (возле приоткрытой двери вверху и внизу ведет себя по-разному), жидкий металл внутри кокилей, стале- и чугуноразливочных ковшей.

Вынужденная конвекция – когда движение среды осуществляется принудительно нагнетателями (насосами, вентиляторами и т.д.). Вынужденная конвекция, как правило, гораздо интенсивней чем свободная. Примеры: течение воды внутри батарей центрального отопления; эксгаустеры в аглоцехах, дымососы, вентиляторы и т.д.

Конвективный теплообмен между жидкостью или газом и поверхностью твёрдого тела называют конвективной теплоотдачей или просто теплоотдачей. Тепловой поток при конвекции определяется законом Ньютона-Рихмана, основным законом теплоотдачи или Q= a(tж -tст. )×F, Вт,

где a — коэффициент теплоотдачи, Вт/м 2 К; F – поверхность теплообмена, м 2 ; tж и tст — температура жидкости вдали от стенки и поверхности стенки, о С.

Если теплопроводность и конвекция требуют наличия непосредственного контакта между теплообменивающимися телами, то для 3 го «кита9quot; – излучения

это необязательно. Оно может передаваться через вакуум, т.е. в отсутствии какой-либо среды.

3) Излучение или лучистый теплообмен – это процесс преобразования тепла в лучистую, электромагнитную форму энергии и передачи её в окружающее пространство.

Или по-другому. «Любое тело, имеющее абсолютную температуру выше 0 о К способно и вынуждено превращать часть своей внутренней энергии в тепловые лучи, которые попадая на окружающие предметы частично поглощаются, частично отражаются и частично проходят сквозь тело. Примеры: теплообмен между солнцем и Землей, лампы накаливания, сильно разогретые тела.

Тепловой поток при излучении определяется законом Стефана Больцмана Q=s(T 4 пов -T 4 ос )×F, Вт, где Тп и То.с. ,– температура поверхности и окружающей среды, о К;

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

4.2 Виды теплообмена

В естественных условиях передача внутренней энергии тем теплообмена всегда происходит в строго определенном направлении: от тела с более высокой температурой к телу с более низкой температурой. Когда же температуры тел становятся одинаковыми, наступает состояние теплового равновесия: тела обмениваются энергией в равных количествах.

Совокупность явлений, связанных с переходом тепловой энергии из одних частей пространства в другие, который обусловлен различием температур этих частей, называют в общем случае теплообменом. В природе существует несколько видов теплообмена. Существуют три способа передачи количества теплоты от одного тела к другому: теплопроводность, конвекция и излучение.

Поместим в пламя спиртовки конец металлического стержня. К стержню на равных расстояниях друг от друга прикрепим с помощью воска несколько спичек. При нагревании одного конца стержня восковые шарики плавятся, и спички одна за другой падают. Это свидетельствует о том, что, внутренняя энергия передается от одного конца стержня к другому.

Виды теплообмена

Рисунок 1 Демонстрация процесса теплопроводности

Выясним причину этого явления.

При нагревании конца стержня интенсивность движения частиц, из которых состоит металл, возрастает, их кинетическая энергия увеличивается. Вследствие хаотичности теплового движения они сталкиваются с более медленными частицами соседнего холодного слоя металла и передают им часть своей энергии. В результате этого внутренняя энергия передается от одного конца стержня к другому.

Передача внутренней энергии от одной части тела к другой в результате теплового движения его частиц называется теплопроводностью.

Передача внутренней энергии путем теплопроводности происходит главным образом в твердых телах. В жидких и газообразных телах передача внутренней энергии осуществляется и другими способами. Так, при нагревании воды плотность ее нижних, более горячих, слоев уменьшается, а верхние слои остаются холодными и плотность их не изменяется. Под действием сил тяжести более плотные холодные слои воды опускаются вниз, а нагретые поднимаются вверх: происходит механическое перемешивание холодных и нагретых слоев жидкости. Вся вода прогревается. Аналогичные процессы происходят и в газах.

Передача внутренней энергии вследствие механического перемешивания нагретых и холодных слоев жидкости или газа называется конвекцией.

Явление конвекции играет большую роль в природе и технике. Конвекционные потоки вызывают постоянное перемешивание воздуха в атмосфере, благодаря чему состав воздуха во всех местах Земли практически одинаков. Конвекционные течения обеспечивают непрерывное поступление свежих порций кислорода к пламени в процессах горения. Вследствие конвекции происходит выравнивание температуры воздуха в жилых помещениях при отоплении, а также воздушное охлаждение приборов при работе различной радиоэлектронной аппаратуры.

Виды теплообмена

Рисунок 2 Обогрев и выравнивание температуры воздуха в жилых помещениях при отоплении вследствие конвекции

Передача внутренней энергии может происходить и путем электромагнитного излучения. Это легко обнаружить на опыте. Включим в сеть электронагревательную печь. Она хорошо обогревает руку, когда мы подносим ее не только сверху, но и сбоку печи. Теплопроводность воздуха очень мала, а конвекционные потоки поднимаются вверх. В этом случае энергия от раскаленной электрическим током спирали в основном передается способом излучения.

Передача внутренней энергии путем излучения осуществляется не частицами вещества, а частицами электромагнитного поля — фотонами. Они не существуют внутри атомов «в готовом виде», подобно электронам или протонам. Фотоны возникают при переходе электронов из одного электронного слоя в другой, расположенный ближе к ядру, и при этом уносят с собой определенную порцию энергии. Достигая другого тела, фотоны поглощаются его атомами и целиком передают им свою энергию.

Передача внутренней энергии от одного тела к другому вследствие ее переноса частицами электромагнитного поля — фотонами, называется электромагнитным излучением. Любое тело, температура которого выше температуры окружающей среды, излучает свою внутреннюю энергию в окружающее пространство. Количество энергии, излучаемое телом в единицу времени, резко возрастает с повышением его температуры.

Виды теплообмена

Рисунок 3 Опыт, иллюстрирующий передачу внутренней энергии горячего чайника через излучение

Виды теплообмена

Рисунок 4 Излучение от Солнца

Явления переноса в термодинамически неравновесных системах. Теплопроводность

В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы, количества движения. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом количества движения). Для этих явлений перенос энергии, массы и количества движения всегда происходит в направлении, обратном их градиенту, т. е. система приближается к состоянию термодинамического равновесия.

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит процесс выравнивания средних кинетических энергий молекул, т. е. иными словами, выравнивание температур.

Процесс передачи энергии в форме теплоты подчиняется закону теплопроводности Фурье: количество теплоты q, которое переносится за единицу времени через единицу площади, прямо пропорционально Виды теплообмена— градиенту температуры, равному скорости изменения температуры на единицу длины х в направлении нормали к этой площади:

где λ — коэффициент теплопроводности или теплопроводность. Знак минус показывает, что при теплопроводности энергия переносится в сторону убывания температуры. Теплопроводность λ равна количеству теплоты, переносимой через единицу площади за единицу времени при температурном градиенте, равном единице.

Очевидно, что теплота Q, прошедшая посредством теплопроводности через площадь S за время t, пропорциональна площади S, времени t и градиенту температуры Виды теплообмена:

Виды теплообмена Виды теплообмена

Можно показать, что

где сVудельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), ρ — плотность газа, <υ9gt; — средняя арифметическая скорость теплового движения молекул, <l > — средняя длина свободного пробега.

Т.е. видно от каких причин зависит количество энергии, передаваемое путем теплопроводности, например, из комнаты через стенку на улицу. Очевидно, что из комнаты на улицу передается энергии тем больше, чем больше площадь стенки S, чем больше разность температур Δt в комнате и на улице, чем больше времени t происходит теплообмен между комнатой и улицей и чем меньше толщина стенки (толщина слоя вещества) d: Виды теплообмена

Виды теплообмена.

Кроме того, количество энергии, передаваемое путем теплопроводности, зависит от материала, из которого изготовлена стенка. Различные вещества при одинаковых условиях передают путем теплопроводности разное количество энергии. Количество энергии, которое передается путем теплопроводности через каждую единицу площади слоя вещества за единицу времени при разности температур между его поверхностями в 1°С и при его толщине в 1 м (единицу длины), может служить мерой способности вещества передавать энергию путем теплопроводности. Эту величину называют коэффициентом теплопроводности. Чем больше коэффициент теплопроводности λ, тем больше энергии передается слоем вещества. Наибольшей теплопроводностью обладают металлы, несколько меньшей – жидкости. Наименьшей теплопроводностью обладает сухой воздух и шерсть. Этим и объясняются теплоизолирующие свойства одежды у человека, перьев у птицы и шерсти у животных.

Понятие о теплообмене и его видах

Согласно второму закону термодинамики, если в теле или в какой-либо термодинамической системе тел возникала разность температур, то из области с более высокой температурой в область с более низкой температурой будет передаваться тепловая энергия. В этом случае говорят, что между указанными областями возник теплообмен.

Известные законы и зависимости термодинамики позволяют определить как количество тепловой энергии, передаваемой в результате теплообмена, так и температуру тел, участвующих в нем. Эти законы, кроме того, позволяют найти также скорость передачи тепловой энергии и время, за которое произойдет выравнивание температур.

Указанные процессы исследует раздел теплотехники — теория теплообмена.

Тела или области тел обмениваются между собой тепловой энергией тремя способами:

На этих трех способах основаны все виды теплообмена. Основных видов теплообмена пять.

Два простых вида теплообмена:

— теплопроводность (название этого вида совпадает с названием способа, с помощью которого этот обмен осуществляется)

Рассмотрим способы обмена тепловой энергией.

Теплопроводность — способ теплообмена, основанный на передаче энергии теплового движения микрочастиц путем их соударений. Микрочастицы движутся со скоростями, пропорциональными их абсолютной температуре. В результате их столкновений происходит передача тепловой энергии в отдельно взятом теле из области с более высокой температурой в область с более низкой температурой. Передача тепловой энергии от одного тела к другому в вакууме осуществляется только при контакте тел.

Итак, теплопроводность — это перенос тепловой энергии соударением микрочастиц. В металлах, например, этими частицами являются свободные электроны, в жидкостях и газах — молекулы.

Конвекция (от латинского convectio — принесение, доставка) — способ теплообмена, при котором передача тепловой энергии осуществляется путем переноса макроскопических тел из областей тела с высокой температурой в области с низкой температурой. Конвекция свойственна только жидкостям и газам. Перенос обусловлен градиентом давления в жидкости или газе, который вызван наличием либо сил тяжеcти (естественная конвекция), либо источников энергии, приводящих жидкость или газ в движение, например, насосов, вентиляторов и т. п. (вынужденная конвекция).

Естественная конвекция вызывается силами Архимеда, которые «выталкивают» из зоны нагрева более горячие, а, следовательно, как правило, и более легкие области жидкости, которые, уступая место более холодным областям, переносят тепловую энергию.

Вынужденная конвекция тем интенсивнее, чем больше градиент давления, создаваемый в жидкости, и чем меньше ее вязкость.

Естественная конвекция по сравнению с теплопроводностью значительно быстрее осуществляет теплообмен в жидкости, так как при наличии первой из областей с высокой температурой в области с низкой температурой переносятся значительные массы нагретой жидкости или газа. Это делает теплообмен более эффективным, чем перенос тепловой энергии соударением микрочастиц.

Пример 10.1. Если при наличии сил тяжести нагревать жидкость или газ в сосуде не внизу сосуда, как это обычно делается, а вверху, то конвекция будет отсутствовать. Прогрев жидкостей или газов в этом случае крайне замедляется вследствие их ничтожной теплопроводности.

В свою очередь, вынужденная конвекция вызывает еще более интенсивный теплообмен, чем естественная, так как первая приводит к более высоким скоростям перемешивания жидкостей и газов, чем последняя.

Тепловое излучение — способ теплообмена, основанный на способности всех тел при определенных условиях излучать энергию в виде электромагнитных волн (фотонов) и частиц вещества (например, нейтронов, осколков ядер при ядерных реакциях и т. п.). При этом излучающее тело теряет тепловую энергию и при этом охлаждается, а тело, которое поглощает излучение, нагревается.

Этот способ является единственным способом передачи тепловой энергии от одних тел к другим в вакууме.

Рассмотрим основные виды теплообмена.

Простые виды теплообмена — теплопроводность и тепловое излучение — не требуют пояснений. Следует только отметить, что тепловым излучением называется вид теплообмена, основанный на излучении и поглощении тепловой энергии только в виде электромагнитных волн (фотонов). Теплообмен, основанный на излучении и поглощении частиц вещества (нейтронов и т. п.), здесь не рассматривается.

Сложные виды теплообмена требуют пояснений.

Так, конвективный теплообмен — это сложный вид обмена тепловой энергией, основанный на двух способах теплообмена: конвекции и теплопроводности. Необходимость рассмотрения конвекции и теплопроводности в одном виде теплообмена обусловлена тем, что при конвекции (перемешивании и переносе) обязательно имеет место контакт макрочастиц, который приводит к возникновению теплопроводности. Обратное условие не соблюдается, это хорошо видно в примере 10.1.

Теплоотдача — сложный вид теплообмена между поверхностью твердого тела и жидкостью (или газом); контактирующей с этой поверхностью. Этот вид теплообмена можно рассматривать как наиболее часто встречающийся случай конвективного теплообмена между твердым телом и жидкостью.

Теплопередача — сложный вид теплообмена между двумя жидкостями через твердую стенку. В основе его лежат явления теплопроводности через стенку и теплоотдачи между стенкой и жидкостью.

На практике часто встречаются случаи более сложных видов обмена тепловой энергией, основанных на всех трех способах теплообмена. В этих случаях, однако, сложные виды теплообмена разделяют на более простые. В частности, тепловое излучение или, как его еще называют, лучистый теплообмен, рассматривают независимо от других видов обмена теплом.

Введем ряд понятий и определений, которыми будем пользоваться в теории теплообмена.

Количественной характеристикой переноса теплоты является удельный тепловой поток.

Удельный тепловой поток — это количество тепловой энергии, передаваемой через поверхность с единичной площадью в единицу времени:

Заметим, что q является векторной величиной и имеет направление в сторону понижения температуры.

Совокупность значений температуры во всех точках пространства (или тела) в определенный момент времени называется температурным полем .

Различают стационарные (температура которых во всех точках не меняется с течением времени t ) и нестационарные температурные поля (для которых T =f (t )).

Поверхности пространства, все точки которых имеют одинаковую температуру, называются изотермическими .

Виды теплообмена

Внутреннюю энергию тела можно изменить двумя способами: путем совершения работы и путем теплообмена. Теплообмен может осуществляться по-разному. Различают три вида теплообмена: теплопроводность, конвекция и лучистый теплообмен.
pictur.jpg

1. Теплопроводность — это вид теплообмена, при котором происходит непосредственная передача энергии от частиц более нагретой части тела к частицам его менее нагретой части. При теплопроводности само вещество не перемещается вдоль тела — переносится лишь энергия.

Обратимся к опыту. Закрепим в штативе толстую медную проволоку, а к проволоке прикрепим воском (или пластилином) несколько гвоздиков (рис. 63).

При нагревании свободного конца проволоки в пламени спиртовки воск плавится и гвоздики постепенно отпадают от проволоки. Причем сначала отпадают те, которые расположены ближе к пламени, затем по очереди все остальные. Объясняется это следующим образом.
Виды теплообмена

Сначала увеличивается скорость движения тех частиц металла, которые ближе к пламени. Температура проволоки в этом месте повышается. При взаимодействии этих частиц с соседними скорость последних также увеличивается, в результате чего повышается температура следующей части проволоки. Затем увеличивается скорость движения следующих частиц и т. д. пока не прогреется вся проволока.

Различные вещества имеют разную теплопроводность: у одних она больше, у других — меньше. Из жизненного опыта известно, что если, например, взять какой-либо железный предмет (допустим, гвоздь) и начать нагревать его в огне, то долго удерживать его в руке мы не сможем. И наоборот, горящую спичку можно держать до тех пор, пока пламя не коснется руки. Это означает, что дерево обладает меньшей теплопроводностью, чем железо .

Наибольшей теплопроводностью обладают металлы, особенно серебро и медь. У жидкостей (за исключением расплавленных металлов) теплопроводность невелика. У газов она еще меньше, так как молекулы их находятся сравнительно далеко друг от друга и передача энергии от одной частицы к другой затруднена.

Если теплопроводность различных веществ сравнить с теплопроводностью меди, то окажется, что у железа она примерно в 5 раз меньше, у воды — в 658 раз меньше, у пористого кирпича — в 840 раз меньше, у свежевыпавшего снега — почти в 4000 раз меньше, у ваты, древесных опилок и овечьей шерсти — почти в 10 000 раз меньше, а у воздуха она примерно в 20 000 раз меньше.

Плохая теплопроводность шерсти, пуха и меха (обусловленная наличием между их волокнами воздуха) позволяет телу животного сохранять вырабатываемую организмом энергию и тем самым защищаться от охлаждения. Защищает от холода и жировой слой, который имеется у водоплавающих птиц, китов, моржей, тюленей и некоторых других животных.

2. Конвекция — это теплообмен в жидких и газообразных средах, осуществляемый потоками (или струями) вещества.
Общеизвестно, например, что жидкости и газы обычно нагревают снизу. Чайник с водой ставят на огонь, радиаторы отопления помещают под окнами около пола. Случайно ли это?

Поместив руку над горячей плитой или над включенной лампой, мы почувствуем, что от плиты или лампы вверх поднимаются теплые струи воздуха. Эти струи могут даже вращать небольшую бумажную вертушку, помещенную над лампой (рис. 64). Откуда берутся эти струи?
Виды теплообмена

Часть воздуха, которая соприкасается с плитой или лампой, нагревается и вследствие этого расширяется. Ее плотность становится меньше, чем у окружающей (более холодной) среды, и под действием архимедовой (выталкивающей) силы она начинает подниматься вверх. Ее место внизу заполняет холодный воздух. Через некоторое время, прогревшись, этот слои воздуха также поднимается вверх, уступая место следующей порции воздуха, и т. д. Это и есть конвекция.

Точно так же переносится энергия и при нагревании жидкости. Чтобы заметить перемещение слоев жидкости при нагревании, на дно стеклянной колбы с водой опускают кристаллик красящего вещества (например, пер- манганата калия) и колбу ставят на огонь. Через некоторое время нагретые нижние слои воды, окрашенные перманганатом калия в фиолетовый цвет, начинают подниматься вверх (рис. 65). На их место приходит холодная вода, которая, прогревшись, также начинает подниматься вверх, и т. д. Постепенно вся вода оказывается нагретой. Именно благодаря конвекции происходит нагревание воздуха и в наших жилых комнатах (рис. 66).
Виды теплообмена Виды теплообмена

Будут ли прогреваться воздух и жидкость, если их нагревать не снизу, а сверху? Обратимся к опыту. Поместив в пробирку кусочек льда и придавив его гайкой или металлической сеточкой, нальем туда же холодную воду. Нагревая ее сверху, можно довести верхние слои воды до кипения (рис. 67), между тем как нижние слои воды останутся холодными (и даже лед там не растает). Объясняется это тем, что при таком способе нагревания конвекции не происходит. Нагретым слоям воды некуда подниматься: ведь они и так уже наверху. Нижние же (холодные) слои так и останутся внизу. Правда, вода может прогреться благодаря теплопроводности, однако она очень низкая, так что пришлось бы долго ждать, пока это произошло бы.

Точно так же можно объяснить, почему не прогревается воздух, находящийся в пробирке, которая изображена на рисунке 68.
Виды теплообмена

Горячим он становится лишь сверху, внизу же он остается холодным.

Опыты, изображенные на рисунках 67 и 68, показывают не только то, что жидкости и газы следует нагревать снизу, но и то, что у них очень плохая теплопроводность.

3. Лучистый теплообмен — это теплообмен, при котором энергия переносится различными лучами. Это могут быть солнечные лучи, а также лучи, испускаемые нагретыми телами, находящимися вокруг нас.

Так, например, сидя около камина или костра, мы чувствуем, как тепло передается от огня нашему телу. Однако причиной такой теплопередачи не может быть ни теплопроводность (которая у воздуха, находящегося между пламенем и телом, очень мала), ни конвекция (так как конвекционные потоки всегда направлены вверх). Здесь имеет место третий вид теплообмена-лучистый теплообмен.

Возьмем теплоприемник — прибор, представляющий собой плоскую круглую коробочку, одна сторона которой отполирована, как зеркало, а другая покрыта черной матовой краской. Внутри коробочки находится воздух, который может выходить через специальное отверстие. Соединим теплоприемник с жидкостным манометром (рис. 69) и поднесем к теплоприемнику электрическую плитку или кусок металла, нагретый до высокой температуры. Мы заметим, что столбик жидкости в манометре переместится. Но это означает, что воздух в теплоприемнике нагрелся и расширился. Нагревание воздуха в теплоприемнике можно объяснить лишь передачей ему энергии от нагретого тела. Каким образом передавалась эта энергия? Ясно, что не теплопроводностью, так как между нагретым телом и теплоприемником находится воздух, обладающий малой теплопроводностью. Не было здесь и конвекции: ведь теплоприемник расположен не над нагретым телом, а рядом с ним. Энергия в данном случае передавалась с помощью невидимых лучей, испускаемых нагретым телом. Эти лучи называюттепловым излучением .

С помощью теплового излучения (как видимого, так и невидимого) передается на Землю и солнечная энергия. Отличительной особенностью этого вида теплообмена является возможность осуществления через вакуум.

Тепловое излучение испускают все тела: электрическая плитка, лампа, земля, стакан с чаем, тело человека и т. д. Но у тел с низкой температурой оно слабое. И наоборот, чем выше температура тела, тем больше энергии оно передает путем излучения.

Когда излучение, распространяясь от тела-источника, достигает других тел, то часть его отражается, а часть ими поглощается. При поглощении энергия теплового излучения превращается во внутреннюю энергию тел, и они нагреваются.

Светлые и темные поверхности тел поглощают излучение по-разному. Если теплоприемник (см. рис. 69) повернуть к излучающему телу сначала черной, а затем блестящей поверхностью, то столбик жидкости в манометре в первом случае переместится на большее расстояние, чем во втором. Это показывает, что тело с темной поверхностью лучше поглощает энергию (и, следовательно, сильнее нагревается), чем тело со светлой или зеркальной поверхностью.
Виды теплообмена

Тела с темной поверхностью не только лучше поглощают, но и лучше излучают энергию. Больше излучая, они и остывают быстрее. Например, в темном чайнике горячая вода остывает быстрее, чем в светлом.

Способность по-разному поглощать энергию излучения находит широкое применение в технике. Например, воздушные шары и крылья самолетов часто красят серебристой краской, чтобы они меньше нагревались солнечными лучами. Если же нужно использовать солнечную энергию (например, для нагревания некоторых приборов, установленных на искусственных спутниках), то эти устройства окрашивают в темный цвет.
Виды теплообмена
. 1. Перечислите виды теплообмена. 2. Что такое теплопроводность? У каких тел она лучше, у каких хуже? 3. Как вы думаете, о чем свидетельствует опыт, изображенный иа рисунке 70? 4. Что такое конвекция? 5. Почему жидкости и газы нагревают снизу? 6. Почему конвекция невозможна в твердых телах? 7. Какой вид теплообмена может осуществляться через вакуум. 8. Как устроен теплоприемник? 9. Какие тела лучше и какие хуже поглощают энергию теплового излучения? 10. Почему в светлом чайнике горячая вода дольше не остывает, чем в темном?

Экспериментальные задания . 1. Находясь дома, на улице или в транспорте, проверьте, какие предметы на ощупь кажутся более холодными. Что вы можете сказать об их теплопроводности? Составьте на основе своих наблюдений ряд из названий материалов в порядке возрастания их теплопроводности. 2. Включите электрическую лампу и поднесите к ией (не касаясь лампы) руку. Что вы чувствуете? Какой из видов теплообмена происходит в данном случае? 3. Греет ли шуба? Для выяснения этого возьмите термометр и, заметив его показание, закутайте в шубу. Спустя полчаса выньте его. Изменились ли показания термометра. Почему?

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Материалы с физики 8 класс, задание и ответы с физики по классам, тестирование онлайн. планы конспектов уроков по физике 8 класс

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Виды теплообмена: коэффициент теплопередачи

Любое материальное тело обладает такой характеристикой как теплота, которая может увеличиваться и уменьшаться. Теплота не является материальной субстанцией: как часть внутренней энергии вещества она возникает вследствие движения и взаимодействия молекул. Поскольку теплота различных веществ может отличаться, происходит процесс передачи тепла от более нагретой субстанции к веществу с меньшим количеством теплоты. Этот процесс носит название теплопередача. Основные виды теплообмена и механизмы их действия мы рассмотрим в этой статье.

Определение теплопередачи

Теплообмен, или процесс переноса температуры, может происходить как внутри материи, так и от одного вещества к другому. При этом интенсивность теплообмена во многом зависит от физических свойств материи, температуры веществ (если в теплообмене участвуют несколько субстанций) и законов физики. Теплопередача – это процесс, который всегда протекает в одностороннем порядке. Главный принцип теплообмена заключается в том, что наиболее нагретое тело всегда отдаёт тепло объекту с меньшей температурой. Например, при глажке одежды горячий утюг отдаёт тепло брюкам, а не наоборот. Теплопередача — явление, зависимое от временного показателя, характеризующее необратимое распространение тепла в пространстве.

Механизмы теплопередачи

Механизмы теплового взаимодействия веществ могут приобретать разные формы. Известны три вида теплообмена в природе:

  1. Теплопроводность – механизм межмолекулярной передачи тепла из одного участка тела в другой или в иной объект. Свойство основывается на неоднородности температуры в рассматриваемых субстанциях.
  2. Конвекция – теплообмен между текучими средами (жидкая, воздушная).
  3. Лучевое воздействие – передача тепла от нагретых и нагреваемых за счёт своей энергии тел (источников) в виде электромагнитных волн с постоянным спектром.

Рассмотрим перечисленные виды теплообмена более подробно.

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

Виды теплообмена

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Конвекционные виды теплообмена

Конвекция, свойственная в основном для газов и жидкостей, имеет два компонента: межмолекулярную теплопроводность и движение (распространение) среды. Механизм действия конвекции происходит следующим образом: при повышении температуры текучей субстанции её молекулы начинают более активное движение и при отсутствии пространственных ограничений объём вещества увеличивается. Следствием данного процесса будет уменьшение плотности субстанции и её движение вверх. Яркий пример конвекции – это движение нагретого радиатором воздуха от батареи к потолку.

Виды теплообмена

Различают свободные и вынужденные конвективные виды теплообмена. Теплопередача и движение массы при свободном типе происходит за счёт неоднородности субстанции, то есть горячая жидкость поднимается над холодной естественным образом без оказания влияния внешних сил (например, обогрев комнаты посредством центрального отопления). При вынужденной конвекции движение массы происходит под действием внешних сил, например, помешивание чая ложкой.

Виды теплообмена

Лучистый теплообмен

Лучистая или радиационная теплопередача может происходить без контакта с другим объектом или субстанцией, поэтому возможна даже в безвоздушном пространстве (вакууме). Радиационный теплообмен присущ всем телам в большей или меньшей степени и проявляется в виде электромагнитных волн с непрерывным спектром. Яркий тому пример – солнечные лучи. Механизм действия выглядит следующим образом: тело непрерывно излучает определённое количество теплоты в окружающее его пространство. Когда эта энергия попадает на другой объект или субстанцию, часть её поглощается, вторая часть проходит насквозь, а третья отражается в окружающую среду. Любой объект может как излучать тепло, так и поглощать, при этом тёмные вещества способны поглощать больше тепла, чем светлые.

Виды теплообмена

Комбинированные механизмы теплопередачи

В природе виды процессов теплообмена редко встречаются по отдельности. Гораздо чаще их можно наблюдать в совокупности. В термодинамике эти сочетания даже имеют названия, скажем, теплопроводность + конвекция – это конвективный теплообмен, а теплопроводность + тепловое излучение называют радиационно-кондуктивной теплопередачей. Кроме этого, выделяют такие комбинированные виды теплообмена, как:

  • Теплоотдача — движение тепловой энергии между газом или жидкостью и твёрдым веществом.
  • Теплопередача – передача t от одной материи к другой через механическое препятствие.
  • Конвективно-лучистый теплообмен образуется при совмещении конвекции и теплового излучения.

Виды теплообмена в природе (примеры)

Теплообмен в природе играет огромную роль и не ограничивается нагреванием земного шара солнечными лучами. Обширные конвекционные потоки, такие как передвижение воздушных масс, во многом определяют погоду на всей нашей планете.

Виды теплообмена

Теплопроводность ядра Земли приводит к появлению гейзеров и извержению вулканических пород. Это лишь малая часть примеров теплообмена в глобальных масштабах. В совокупности они образуют виды конвективного теплообмена и радиационно-кондуктивные типы теплопередачи необходимые для поддержания жизни на нашей планете.

Использование теплообмена в антропологической деятельности

Тепло – это важная составляющая почти всех производственных процессов. Сложно сказать, какой вид теплообмена человеком используется больше всего в народном хозяйстве. Наверное, все три одновременно. Благодаря процессам теплопередачи происходит выплавка металлов, производство огромного количества товаров, начиная с предметов повседневного использования и заканчивая космическими судами.

Виды теплообмена

Крайне важное значение для цивилизации имеют тепловые агрегаты, способные преобразовывать тепловую энергию в полезную силу. Среди них можно назвать бензиновые, дизельные, компрессорные, турбинные установки. Для своей работы они используют различные виды теплообмена.

Виды теплообмена

7 вещей, которые следует мыть и стирать каждый день Это может показаться еще одним пунктом в бесконечном списке ежедневных дел, но за этим кроется эффективный метод, который позволяет создать положитель.

Виды теплообмена

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Виды теплообмена

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Виды теплообмена

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Виды теплообмена

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Виды теплообмена

Время бить тревогу: 11 признаков, что ваш партнер вам изменяет Измена — это самое страшное, что может случиться в отношениях двух людей. Причем, как правило, все происходит не как в фильмах или сериалах, а гораздо.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *