Защита от шума

Защита от шума и вибрации

Шум – совокупность дискомфортных и бесполезных звуков разной частоты и интенсивности, воспринимаемых органами слуха человека и вызывающих неприятные субъективные ощущения. Характер шума зависит от источника и бывает механическим, аэродинамическим, электромагнитного происхождения, гидродинамическим. Защита от шума

На сегодня защита от шума весьма актуальна: производства перенасыщены оборудованием, улицы переполнены транспортом, нередки ремонты и склоки у соседей.

И экономике он наносит вред. Так, люди умственного труда при шуме в 70 дБ делают в два раза больше ошибок, чем в тишине. При этом работоспособность уменьшается примерно на 60%, а у занятых физическим трудом — на 30%. Шумы повышенной интенсивности искажают звуковую информацию и нарушают слуховую активность человека, неблагоприятно влияют на нервы, способствуют накоплению утомления и снижают работоспособность. Под влиянием шума возникают нарушения кровообращения из-за сужения капилляров, повышается артериальное давление, снижается сопротивляемость организма.

СНиП «Защита от шума» обязует предусматривать мероприятия по шумозащите:

  1. на рабочих местах предприятий;
  2. в помещениях общественных и жилых зданий;
  3. на территории жилой застройки.

Защита от шумаШум создают голоса, бытовые приборы, машины за окном, работающие инструменты. Поэтому защита от шума просто жизненно необходима и определяется, нормируется СНиПом 23-02-2003, сводом правил СП 51.13330.2001; как раздел есть в каждом проекте.

Сегодня для защиты жилых микрорайонов от городского шума применяются ограждающие конструкции и специальные инженерные решения. Это могут быть и акустические экраны вдоль железнодорожных и автомобильных магистралей, и «здания-экраны9raquo;, возведенные между дорогой и жилыми домами. Хорошая защита — заглубление трасс улиц и озеленение откосов. Промышленные предприятия выносят за город, а некоторые работы (ремонт дорог и коммуникаций, строительство) запрещены в ночное время.

Лучшая защита от шума — массивные стены и плотные перекрытия вашей квартиры, но это сложно и неэффективно. Разумнее выполнить звукоизоляцию из пористого материала с волокнистой структурой, особенно на стыках несущих конструкций. То есть звукоизоляция начинается уже с проектирования дома.

Защита от шумаНа пол под плитку, паркет или ламинат следует уложить звукоизолирующий слой, заводя его на стены. Для дополнительной шумоизоляции применяется подвесной акустический потолок. Он поглощает шум и улучшает акустику.

Оградиться от уличного гула помогут стеклопакеты, желательно двух-, трехкамерные. Технологические щели на стыках окна и стены, у подоконников обязательно заделать герметиком. Хорошая защита от шума – рольставни с высокими звукоизолирующими характеристиками, остекленные лоджии и балконы. Порог и притворы входной двери нужно уплотнить.

Часть звуков передается в виде вибрации по стенам и перекрытиям. А это, как известно, весьма вредный фактор, влияющий на здоровье человека.

С такими ударными шумами бороться сложнее. Частично можно их нейтрализовать с помощью засыпной подушки под основанием пола, которая гасит вибрацию. Эффективно кремнеземное рулонное волокно Supersil (6 мм). Если защитить им стыки несущих конструкций, можно уровень шума снизить на 27 дБА.

Защита от шума и вибрации осуществляется с применением современных звуковибропоглощающих и виброизолирующих конструкций и материалов. Хорошо, что дома воздействие вибрации незначительное и чаще всего кратковременное. А вот защита от вибрации на рабочих местах — это уже куда более сложный вопрос.

Защита от шума

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

Защита от шума

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Защита от шума

10 душераздирающих истин, о которых вам никогда не расскажут одинокие люди Обычно у интровертов нет второй половинки. Да и зачем она им? Ведь кто еще сможет понять и поддержать человека лучше, чем он сам? Так думает большинст.

Защита от шума

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Защита от шума

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Защита от шума

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

Защита от шума

ИНСТИТУТ ОТКРЫТОГО ОБРАЗОВАНИЯ

ХАРАКТЕРИСТИКИ И ВИДЫ ПРОИЗВОДСТВЕННЫХ ШУМОВ

ИЗМЕРЕНИЕ ШУМА. ШУМОМЕРЫ

Снижение шума в жизнедеятельности человека становится актуальной проблемой. Среди всех шумов, оказывающих воздействие на человека выделяется шум производственного происхождения. Уровень производственного шума существенно подрос. Это вызвано использованием высокопроизводительных машин и механизмов, возрастанием рабочих скоростей. Одним из самых распространенных видов производственного шума является механический шум. Уровни этого шума достигают 120 дБ. Во многих отраслях промышленности преобладают шумы импульсные и ударные, которые выделяются как весьма вредные. Неожиданные и ударные шумы могут вызвать реакцию испуга и неадекватность поведения. Своеобразное негативное действие шума ударного происхождения может вызвать повышение кровяного давления, частоты дыхания, синусовую аритмию и снизить умственную работоспособность.

Шум наносит вред не только здоровью людей, но и экономике страны. Так люди, занятые трудом умственной напряженности, делали на фоне шума в 70 дБ почти в два раза больше ошибок, чем в тишине. Работоспособность занятых умственным трудом падает примерно на 60%, а физическим — на 30%. Шум ударного происхождения наиболее характерен для промышленности (металлургия, машиностроение, транспорт) и обуславливает соударение машин и механизмов в процессе работы. Эта проблема относится к числу наиболее актуальных проблем, связанных с оценкой поведения различных конструкций в условиях воздействия интенсивных импульсивных нагрузок, которые возникают при эксплуатации современного оборудования. Анализ литературных данных показал, что наиболее распространен метод исследования на моделях процессов соударения в лабораторных условиях с целью разработки материалов и конструкций с повышенными демпфирующими характеристиками, низким звукоизлучением.

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Шум как гигиенический фактор это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение. Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер. шум вредный нормирование шумоизмерительный

Производственным шумом называется шум на рабочих местах, на участках или на территориях предприятий, который возникает во время производственного процесса. Следствием вредного действия производственного шума могут быть профессиональные заболевания, повышение общей заболеваемости, снижение работоспособности, повышение степени риска травм и несчастных случаев, связанных с нарушением восприятия предупредительных сигналов, нарушение слухового контроля функционирования технологического оборудования, снижение производительности труда.

По характеру нарушения физиологических функций шум разделяется на такой, который мешает (препятствует языковой связи), раздражающий (вызывает нервное напряжение и вследствие этого снижения работоспособности, общее переутомление), вредный (нарушает физиологические функции на длительный период и вызывает развитие хронических заболеваний, которые непосредственно связаны со слуховым восприятием: ухудшение слуха, гипертония, туберкулез, язва желудка), травмирующий (резко нарушает физиологические функции организма человека).Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом. Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах. Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей. Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).

Шум как физическое явление это колебание упругой среды. Он характеризуется звуковым давлением как функцией частоты и времени. Для человека область слышимых звуков определяется в интервале от 16 до 20 000 Гц. Наиболее чувствителен слуховой анализатор к восприятию звуков частотой 1000—3000 Гц (речевая зона).

ИСТОЧНИКИ ПРОИЗВОДСТВЕННОГО ШУМА

По природе возникновения шумы машин или агрегатов делятся на:

аэродинамические и гидродинамические

При работе различных механизмов, агрегатов, оборудования одновременно могут возникать шумы различной природы.

На ряде производств преобладает механический шум, основными источниками которого являются зубчатые передачи, механизмы ударного типа, цепные передачи, подшипники качения и т.п. Он вызывается силовыми воздействиями неуравновешенных вращающихся масс, ударами в сочленениях деталей, стуками в зазорах, движением материалов в трубопроводах и т.п. Спектр механического шума занимает широкую область частот. Определяющими факторами механического шума являются форма, размеры и тип конструкции, число оборотов, механические свойства материала, состояние поверхностей взаимодействующих тел и их смазывание. Машины ударного действия, к которым относится, например, кузнечно-прессовое оборудование, являются источником импульсного шума, причем его уровень на рабочих местах, как правило, превышает допустимый. На машиностроительных предприятиях наибольший уровень шума создается при работе металло- и деревообрабатывающих станков.

Аэродинамические и гидродинамические шумы:

— шумы, обусловленные периодическим выбросом газа в атмосферу, работой винтовых насосов и компрессоров, пневматических двигателей, двигателей внутреннего сгорания;

— шумы, возникающие из-за образования вихрей потока у твердых границ. Эти шумы наиболее характерны для вентиляторов, турбовоздуходувок, насосов, турбокомпрессоров, воздуховодов;

— кавитационный шум, возникающий в жидкостях из-за потери жидкостью прочности на разрыв при уменьшении давления ниже определенного предела и возникновения полостей и пузырьков, заполненных парами жидкости и растворенными в ней газами.

Шумы электромагнитного происхождения

Шумы электромагнитного происхождения возникают в различных электротехнических изделиях (например при работе электрических машин). Их причиной является взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей. Электрические машины создают шумы с различными уровнями звука от 20?30 дБ (микромашины) до 100?110 дБ (крупные быстроходные машины).

ВРЕДНЫЕ ВОЗДЕЙСТВИЯ ШУМА НА ОРГАНИЗМ ЧЕЛОВЕКА

Проявление вредного воздействия шума на организм человека весьма разнообразно.

Длительное воздействие интенсивного шума (выше 80 дБА) на слух человека приводит к его частичной или полной потере. В зависимости от длительности и интенсивности воздействия шума происходит большее или меньшее снижение чувствительности органов слуха, выражающееся временным смещением порога слышимости. которое исчезает после окончания воздействия шума, а при большой длительности и (или) интенсивности шума происходят необратимые потери слуха (тугоухость). характеризуемые постоянным изменением порога слышимости.

Различают следующие степени потери слуха:

1. I степень (легкое снижение слуха) — потеря слуха в области речевых частот составляет 10 — 20 дБ, на частоте 4000 Гц — 20 — 60 дБ;

2.II степень (умеренное снижение слуха) — потеря слуха в области речевых частот составляет 21 — 30 дБ, на частоте 4000 Гц — 20 — 65 дБ;

3.III степень (значительное снижение слуха) — потеря слуха в области речевых частот составляет 31 дБ и более, на частоте 4000 Гц — 20 — 78 дБ.

Действие шума на организм человека не ограничивается воздействием на орган слуха. Через волокна слуховых нервов раздражение шумом передается в центральную и вегетативную нервные системы, а через них воздействует на внутренние органы, приводя к значительным изменениям в функциональном состоянии организма, влияет на психическое состояние человека, вызывая чувство беспокойства и раздражения. Человек, подвергающийся воздействию интенсивного (более 80 дБ) шума, затрачивает в среднем на 10 — 20% больше физических и нервно-психических усилий, чтобы сохранить выработку, достигнутую им при уровне звука ниже 70 дБ(А). Установлено повышение на 10 — 15% общей заболеваемости рабочих шумных производств. Воздействие на вегетативную нервную систему проявляется даже при небольших уровнях звука (40 — 70 дБ(А). Из вегетативных реакций наиболее выраженным является нарушение периферического кровообращения за счет сужения капилляров кожного покрова и слизистых оболочек, а также повышения артериального давления (при уровнях звука выше 85 дБА).

Воздействие шума на центральную нервную систему вызывает увеличение латентного (скрытого) периода зрительной моторной реакции, приводит к нарушению подвижности нервных процессов, изменению электроэнцефалографических показателей, нарушает биоэлектрическую активность головного мозга с проявлением общих функциональных изменений в организме (уже при шуме 50 — 60 дБА), существенно изменяет биопотенциалы мозга, их динамику, вызывает биохимические изменения в структурах головного мозга.

При импульсных и нерегулярных шумах степень воздействия шума повышается.

Изменения в функциональном состоянии центральной и вегетативной нервных систем наступают гораздо раньше и при меньших уровнях шума, чем снижение слуховой чувствительности.

В настоящее время «шумовая болезнь» характеризуется комплексом симптомов:

1) снижение слуховой чувствительности;

2) изменение функции пищеварения, выражающейся в понижении кислотности;

3) сердечно-сосудистая недостаточность;

4) нейроэндокринные расстройства.

Работающие в условиях длительного шумового воздействия испытывают раздражительность, головные боли, головокружение, снижение памяти, повышенную утомляемость, понижение аппетита, боли в ушах и т.д. Воздействие шума может вызывать негативные изменения эмоционального состояния человека, вплоть до стрессовых. Все это снижает работоспособность человека и его производительность, качество и безопасность труда. Установлено, что при работах, требующих повышенного внимания, при увеличении уровня звука от 70 до 90 дБА производительность труда снижается на 20%.

Ультразвуки (свыше 20000 Гц) также являются причиной повреждения слуха, хотя человеческое ухо на них не реагирует. Мощный ультразвук воздействует на нервные клетки головного мозга и спинной мозг, вызывает жжение в наружном слуховом проходе и ощущение тошноты.

Не менее опасными являются инфразвуковые воздействия акустических колебаний (менее 20 Гц). При достаточной интенсивности инфразвуки могут воздействовать на вестибулярный аппарат, снижая слуховую восприимчивость и повышая усталость и раздражительность, и приводят к нарушению координации. Особую роль играют инфрачастотные колебания с частотой 7 Гц. В результате их совпадения с собственной частотой альфа — ритма головного мозга наблюдаются не только нарушения слуха, но и могут возникать внутренние кровотечения. Инфразвуки (6 ? 8 Гц) могут привести к нарушению сердечной деятельности и кровообращения.

ХАРАКТЕРИСТИКИ И ВИДЫ ПРОИЗВОДСТВЕННЫХ ШУМОВ

Производственный шум характеризуется спектром. который состоит из звуковых волн разных частот.

При исследовании шумов обычно слышимый диапазон 16 Гц ? 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными пооктавным полосам частот.

Полоса частот, верхняя граница которой превышает нижнюю в два раза. т.е. f 2 = 2 f 1. называется октавой.

Для более детального исследования шумов иногда используются третьеоктавные полосы частот, для которых

Октавная или третьеоктавная полоса обычно задается среднегеометрической частотой :

Существует стандартный ряд среднегеометрических частот октавных полос, в которых рассматриваются спектры шумов (f сг мин = 31,5 Гц, f сг макс = 8000 Гц).

Уровень звука за 8 часовой рабочий день изменяется более чем на 5 дБ(А)

Уровень звука непрерывно изменяется во времени

Уровень звука изменяется ступенчато не более чем на 5 дБ(А), длительность интервала 1с и более

Состоят из одного или нескольких звуковых сигналов, длительность интервала меньше 1с

ИЗМЕРЕНИЕ ШУМА. ШУМОМЕРЫ

Шумоизмерительные приборы — шумомеры — состоят, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора (самописца или магнитофона) и индикатора, показывающего уровень измеряемой величины в дБ. Шумомеры снабжены блоками частотной коррекции с переключателями А, В, С, D и временных характеристик c переключателями F (fast) — быстро, S (slow) — медленно, I (pik) — импульс. Шкалу F применяют при измерениях постоянных шумов, S — колеблющихся и прерывистых, I — импульсных.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 — для лабораторных и натурных измерений; 2 — для технических измерений; 3 — для ориентировочных измерений. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 — от 20 Гц до 8 кГц, класса 3 — от 31,5 Гц до 8 кГц.

Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры.

Приборы для измерения шума строятся на основе частотных анализаторов, состоящих из набора полосовых фильтров и приборов, показывающих уровень звукового давления в определенной полосе частот.

В зависимости от вида частотных характеристик фильтров анализаторы подразделяются на октавные, третьеоктавные и узкополосные.Частотная характеристика фильтра К( f ) =U вых /U вх представляет собой зависимость коэффициента передачи сигнала со входа фильтра U вх на его выход U вых от частоты сигнала f. Частотная характеристика типового октавного полосового фильтра показана на рис.3.6. Полосовой фильтр характеризуется полосой пропускания B = f 2 — f 1, т.е. областью частот между двумя частотами f 1 и f 2, на которых частотная характеристика К( f ) имеет значение (затухание) не более 3 дБ.

Для измерения производственных шумов преимущественно используется прибор ВШВ-003-М2, относящийся к шумомерам I класса точности и позволяющий измерять корректированный уровень звука по шкалам А, В, С; уровень звукового давления в диапазоне частот от 20 Гц до 18 кГц и октавных полосах в диапазоне среднегеометрических частот от 16 до 8 кГц в свободном и диффузном звуковых полях. Прибор предназначен для измерения шума в производственных помещениях и жилых кварталах в целях охраны здоровья; при разработке и контроле качества изделий; при исследованиях и испытаниях машин и механизмов

Шум оказывает негативное влияние на весь организм человека. Шумы средних уровней (менее 80 дБА) не вызывают потери слуха, но тем не менее оказывают утомляющее неблагоприятное влияние, которое складывается с аналогичными влияниями других вредных факторов и зависит от вида и характера трудовой нагрузки на организм.

Нормирование шума призвано предотвратить нарушение слуха и снижение работоспособности и производительности труда работающих.

Для разных видов шумов применяются различные способы нормирования.

Для постоянных шумов нормируются уровни звукового давления LPi (дБ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц. Для ориентировочной оценки шумовой характеристики рабочих мест допускается за шумовую характеристику принимать уровень звука L в дБ(А), измеряемый по временной характеристике шумомера «S — медленно».

Нормируемыми параметрами прерывистого и импульсного шума в расчетных точках следует считать эквивалентные (но энергии) уровни звукового давления L экв в дБ в октавных полосах частот со среднегеометрическими частотами 63, 125, 500, 1000, 2000, 4000 и 8000 Гц.

Для непостоянных шумов нормируется так же эквивалентный уровень звука в дБ(А).

Допустимые уровни звукового давления для рабочих мест служебных помещений и для жилых и общественных зданий и их территорий различны.

Нормативным документом, регламентирующим уровни шума для различных категорий рабочих мест служебных помещений является ГОСТ 12.1.003-83 «ССБТ. Шум. Общие требования безопасности».

Допустимые уровни звукового давления (эквивалентные уровни звукового давления) в дБ в октавных полосах частот, уровни звука и эквивалентные уровни звука в дБА для жилых и общественных зданий и их территорий следует принимать в соответствии со СНиП 11-12-88 «Защита от шума».

Слух позволяет человеку воспринимать звуковую информацию. Вместе с тем, насыщение окружающего пространства шумами повышенной интенсивности может привести к искажению звуковой информации и нарушению слуховой активности человека.

Проявление вредного воздействия шума на организм человека весьма разнообразно.

Наиболее опасно длительное воздействие интенсивного шума на слух человека, которое может привести к частичной или полной потере слуха. Медицинская статистика показывает, что тугоухость в последние годы выходит на ведущее место в структуре профессиональных заболеваний и не имеет тенденции к снижению.

Поэтому важно знать особенности восприятия звука человеком, допустимые с точки зрения обеспечения здоровья, высокой производительности и комфортности уровни шума, а также средства и способы борьбы с шумом.

Эффективная защита работающих от неблагоприятного влияния шума требует осуществления комплекса организационных, технических и медицинских мер на этапах проектирования, строительства и эксплуатации производственных предприятий, машин и оборудования. В целях повышения эффективности борьбы с шумом введены обязательный гигиенический контроль объектов, генерирующих шум, регистрация физических факторов, оказывающих вредное воздействие на окружающую среду и отрицательно влияющих на здоровье людей.

Эффективным путем решения проблемы борьбы с шумом является снижение его уровня в самом источнике за счет изменения технологии и конструкции машин. К мерам этого типа относятся замена шумных процессов бесшумными, ударных — безударными, например замена клепки — пайкой, ковки и штамповки обработкой давлением; замена металла в некоторых деталях незвучными материалами, применение виброизоляции, глушителей, демпфирования, звукоизолирующих кожухов и др. При невозможности снижения шума оборудование, являющееся источником повышенного шума, устанавливают в специальные помещения, а пульт дистанционного управления размещают в малошумном помещении. В некоторых случаях снижение уровня шума достигается применением звукопоглощающих пористых материалов, покрытых перфорированными листами алюминия, пластмасс. При необходимости повышения коэффициента звукопоглощения в области высоких частот звукоизолирующие слои покрывают защитной оболочкой с мелкой и частой перфорацией, применяют также штучные звукопоглотители в виде конусов, кубов, закрепленных над оборудованием, являющимся источником повышенного шума. Большое значение в борьбе с шумом имеют архитектурно-планировочные и строительные мероприятия. В тех случаях, когда технические способы не обеспечивают достижения требований действующих нормативов, необходимо ограничение длительности воздействия шума и применение противошумов.

Пртивошумы — средства индивидуальной защиты органа слуха и предупреждения различных расстройств организма, вызываемых чрезмерным шумом. Их используют в основном тогда, когда технические средства борьбы с шумом не обеспечивают снижения его до безопасных пределов. Противошумы подразделяют на три типа: вкладыши, наушники и шлемы.

Противошумные вкладыши вводят в наружный слуховой проход. Вкладыши бывают многократного и однократного пользования. К вкладышам многократного пользования относятся многочисленные варианты заглушек в виде колпачков различной конструкции и формы из резины, каучука и других пластичных полимерных материалов, в некоторых случаях надетых на железные стержни. Противошумные вкладыши многократного использования выпускают нескольких типов и размеров; вес их не регламентируется и колеблется в пределах до 10 г. «Беруши» — коммерческое название отечественных противошумных вкладышей однократного пользования из органического перхлорвинилового фильтрующего шумопоглощающего материала.

Противошумные наушники представляют собой чаши, по форме близкие к полусфере, из легких металлов или пластмасс, наполненные волокнистыми или пористыми звукопоглотителями, удерживаемые с помощью оголовья. Для удобного и плотного прилегания к околоушной области они снабжаются уплотняющими валиками из синтетических тонких пленок, часто заполненных воздухом или жидкими веществами с большим внутренним трением (глицерин, вазелиновое масло и др.). Уплотняющий валик одновременно демпфирует колебания самого корпуса наушника, что существенно при низкочастотных звуковых колебаниях.

Противошумные шлемы — самые громоздкие и дорогостоящие из индивидуальных средств противошумной защиты. Они используются при высоких уровнях шумов, часто применяются в комбинации с наушниками или вкладышами. Расположенный по краю шлема уплотняющий валик обеспечивает плотное прилегание его к голове. Имеются конструкции шлемов с поддутием валика воздухом для надежного облегания головы.

Важное значение в предупреждении развития шумовой патологии имеют предварительные при поступлении на работу и периодические медицинские осмотры. Таким осмотрам подлежат лица, работающие на производствах, где шум превышает предельно допустимый уровень (ПДУ) в любой октавной полосе.

1. Г.А. Суворов, А.М. Лихницкий “Импульсный шум и его влияние на организм человека”, Ленинград, 1975

2. Кондратьев А.И. Местечкина Н.М. Охрана труда в строительстве 1990

Размещено на Allbest.ru

Защита от шума

Источники шума по физической природе шума подразделяют на источники механического, аэродинамического, гидродинамического и электромагнитного шума. В зависимости от характеристик источника шума выбираются средства коллективной защиты (СКЗ) и индивидуальной защиты (СИЗ). Виды коллективных средств защиты представлены на рис. 21.

Выбор СКЗ производится на основе акустического расчета. Цель расчета – определить фактический уровень шума Lф и потребное снижение уровня шума &#&16;L до допустимой величины Lн, т.е &#&16;L= Lф- Lн.

Защита от шума

Рис. 21. Виды средств коллективной защиты от шума

В зависимости от места расположения источника проводится акустический расчет: при размещении источника на открытом пространстве (1) или в помещении (2).

Интенсивность шума на открытом пространстве определяется зависимостью:

где: W – звуковая мощность источника,

S – площадь поверхности, на которую распределяется звуковая энергия, К – коэффициент ослабления шума на пути распространения,

Ф – фактор направленности.

Путем деления левой и правой части приведенной формулы на Io и последующего логарифмирования получена формула для расчета уровня звукового давления:

L = LW + 10 lgФ — 10 lg S/So — &#&16; LW ,

где: LW – уровень звуковой мощности источника;

Ф – фактор направленности источника;

S, So – соответственно площади поверхностей, на которые распределяется звуковая энергия S = 2&#&60;r 2 и So = 1м 2. а r – расстояние от источника до контрольной точки;

&#&16; LW ==10 lgK — снижение уровня шума на пути распространения.

При распространении звука в ограниченном звуковом поле, например в жилой застройке или внутри помещений, в формулу для определения L вводятся поправки, учитывающие отражение и поглощение звуковых волн ограждающими поверхностями.

Интенсивность шума в помещении определяется зависимостью:

I = Iпp + Ioтр = РФ/S + 4Р/В,

где: Iпp, Ioтp – интенсивность прямого звука от источника и интенсивность отраженного от стен звука.

В = А/(1 — ср ) – постоянная помещения,

А = ср Sпов – эквивалентная площадь звукопоглощения, а ср – средний коэффициент звукопоглощения поверхностей ограждений помещения площадью Sпов .

Путем аналогичных преобразований, приведенных выше, получается зависимость для определения уровня звукового давления источника:

Из закономерностей распространения шума и акустического расчета следуют меры защиты от шума: (1) уменьшение звуковой мощности источника; (2) звукопоглощение; (3) звукоизоляция; (4) рациональное размещение источника шума.

1. Уменьшение звуковой мощности источника.

Мероприятия уменьшения шума источника зависят от природы шума.

Механические шумы снижаются за счет уменьшения перехода механической энергии в акустическую путем:

— повышения точности изготовления машин;

— уменьшения передаваемых нагрузок и частоты вращающихся частей;

— замены ударных процессов на безударные;

— улучшение балансировки вращающихся частей;

— замена в механизмах возвратно-поступательного движения на вращательное;

— использование незвучных материалов (пластмассы, незвучные металлы с большим внутренним трением);

— совершенствование смазки трущихся поверхностей;

— применение клиноременных и зубчато-ременных передач вместо зубчатых.

Аэродинамические шумы от перехода энергии газовой струи в аэродинамическую энергию. Снижение аэродинамических шумов достигается:

— уменьшением скорости обтекания тел;

— совершенствованием аэродинамических характеристик тел;

— улучшением аэродинамических характеристик машин (вентиляторов, турбин );

— трансформацией спектра шума в высокочастотную, ультразвуковую область;

— снижением градиента скорости струи за счет совершенствования конструкции.

Гидродинамические шумы при переходе энергии жидкости в акустическую снижаются за счет:

— улучшения гидродинамических характеристик насосов;

— уменьшения турбулентности потока жидкости;

— использования оптимальных режимов работы насосов;

— исключения гидравлических ударов рациональной конструкцией гидросистемы;

— недопущения резких закрытий трубопроводов.

Электромагнитные шумы при переходе энергии электромагнитного поля в акустическую. Методами защиты служат:

— использование в конструкции электрических машин скошенных пазов якоря двигателя;

— применение плотной прессовки пакетов в трансформаторах;

— учет влияния на ферромагнитные массы переменных магнитных полей.

2. Звукопоглощение основано на переходе энергии колеблющихся частиц воздуха в теплоту за счет потерь на трение в порах материала. Характеристикой звукопоглощающих свойств материала служит коэффициент звукопоглощения &#&45;.

где: Wпoгл. Wпад – звуковая энергия, соответственно поглощенная и падающая на поверхность материала. Звукопоглощающими материалами считаются материалы с коэффициентом звукопоглощения более 0,2. У материалов с развитой пористой структурой (незамкнутые поры) величина коэффициента достигает &#&45; = 0,6÷0,9. К таким материалам относятся минеральная вата, стекловолокно, древесноволокнистые плиты и т.п.

Использование звукопоглощения для снижения шума в помещении именуется акустической обработкой помещения.

Акустическая обработка осуществляется различными методами:

— облицовка внутренних поверхностей помещений звукопоглощающими материалами;

— подвеска на потолочные перекрытия звукопоглотителей, выполненных из звукопоглощающего материала.

При выборе звукопоглощающего материала учитывается частота шума, а также условия эксплуатации облицовки (запыленность, влажность и др.). Снижение уровня шума методом звукопоглощения определяется зависимостью

где: В1 и В2 – постоянные помещения до и после акустической обработки, а В1,2 – А1,2 (1-&#&45;1,2 ), А1,2 – эквивалентные площади звукопоглощения до и после обработки помещения, &#&45;1,2 — средние коэффициенты звукопоглощения до и после обработки. Величина А= 0,16 . где V – объем помещения в м 3. Т – время реверберации, т.е. время, в течение которого уровень звукового давления уменьшается на 60 дБ после прекращения действия источника шума.

Наибольший эффект метода звукопоглощения обеспечивается в низких помещениях (до 6÷4 м) при высоких частотах шума. Одиночные объемные звукопоглотители используются в помещениях, где затруднена установка облицовки. Звукопоглотители представляют собой геометрические тела различной формы, выполненные из звукопоглощающего материала. Для расчета снижения шума звукопоглотителями используется формула

где: Ашт – эквивалентная площадь звукопоглотителя, a n – количество поглотителей.

3. Звукоизоляция – это снижение шума на пути его распространения за счет звукоизолирующих преград (стен, перегородок, экранов и т.п.). Звуковая энергия отражается от ограждений и только часть ее проходит через ограждение.

Характеристикой звукоизоляции служит коэффициент звукопроницаемости &#&64;, равный отношению звуковой мощности, прошедшей через ограждение (Wпр), к звуковой мощности (Wпад), падающей на ограждение &#&64; = . Другой характеристикой звукоизоляции является коэффициент звукоизоляции R = 10 lg (дБ).

Для оценки звукоизоляции однородной перегородки используется зависимость R = 201g (m0f ) – 47,5 (дБ), где m0 – масса 1м 2 ограждения (кг), f — частота (Гц).

Звук через ограждения проходит (рис. 22) через отверстия в ограждении, через излучение шума ограждениям под действием на него переменного давления падающего звука, а также от вибрации ограждения, возбуждаемой механическим воздействием на ограждение. В последнем случае звуковые волны распространяются не по воздуху, а по конструкции. Из зависимости для оценки звукоизоляции однородной перегородки следует, что звукоизоляция повышается с ростом массы ограждения и частоты звука. На звукоизоляцию влияют жесткость ограждения, резонансные явления.

Основными типами устройств звукоизоляции являются: звукоизолирующие кожуха, кабины, экраны. Звукоизоляция позволяет ослабить шум в помещении на 30-50 дБ. Нанесение на внутренние поверхности конструкции вибродемпфирующих покрытий увеличивает внутренние потери и повышает эффективность звукоизоляции.

Глушители шума являются устройством снижения аэродинамического шума на пути его распространения. По принципу действия глушители подразделяют на активные (абсорбционные), реактивные и комбинированные (рис. 23).

Защита от шума

Рис. 22. Средства звукоизоляции: 1 – звукоизолирующий кожух; 2 – звукоизолирующая кабина; 3 – акустический экран

Защита от шума

Рис. 23. Глушители: а) активный; б) камерный; в) резонансный

Активные глушители содержат звукопоглощающий материал в виде набивки или матов, закрепляемых на внутренней поверхности глушителя, в виде звукопоглощающих пластин, устанавливаемых в канале глушителя.

Реактивные глушители отражают шумы обратно к источнику. Они снижают шум в узких частотных пределах и подразделяются на камерные и резонансные. Камерные глушители выполняются в виде расширительных камер, отражающих звуковую волну обратно к источнику. В резонансном глушителе снижение шума достигается за счет потерь звуковой энергии на колебательный процесс в резонаторе, который рассчитывается на определенную длину звуковой волны.

Снижение шума в широком диапазоне частот достигается в комбинированных глушителях, в которых используют набор различных шумопонижающих активных и реактивных устройств.

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Сварка. Отраслевая информация.

Средства защиты от шума

Темы. Техника безопасности при сварке.

Средства защиты от шума подразделяются на коллективные и индивидуальные (СИЗ). Из первых наиболее часто используют средства звукоизоляции, звукопоглощения и глушители шума.

Другие страницы по теме

Средства защиты от шума

Разрабатывают или выбирают средства защиты от шума на основании акустического расчета, позволяющего определить в стадии проектирования ожидаемые уровни звукового давления (УЗД) в расчетных точках при известныx источниках шума (ИШ) и иx шумовых характеристиках, или измерений шума (в условиях эксплуатации). Требуемое снижение шума, дБ, Мтр = L — Lдоп. где L — рассчитанные или измеренные УЗД; Lдоп — допустимые УЗД. Методика акустического расчета известна из литературы.

1) Средства звукоизоляции. К средствам звукоизоляции (cм. риcунок 1) относятся: 1 — звукоизолирующие ограждения, 2 — звукоизолирующие кабины и пульты управления, 3 — звукоизолирующие кожухи, 4 — акустические экраны. Их применяют, когда нужно существеннo снизить интенсивность прямого звука нa рабочих местах.

Звукоизолирующие ограждения (стены, перекрытия, окна и т.д.) характеризуются звукоизоляцией R (дБ) воздушного шума. Требуемая звукоизоляция Rтp (дБ) ограждения смежных помещений определяется как Rтp = Lш — Lдоп + 10 lg Soгp — 10 Ig Ви. где Lш — измеренный или рассчитанный УЗД в шумном помещении; Lдоп — допустимый УЗД в изолируемом помещении, дБ; Ви — постоянная изолируемого помещения (м 2 ), определяемая по справочным данным; Sorp — площадь ограждения, м 2 .

Расчет и проектирование звукоизолирующих ограждений проводят с учетом Rтp. Возможны два пути решения этой задачи: 1) использование экспериментальных данных по звукоизоляции ограждений Roгp ≥ Rтp на стандартных среднегеометрических частотах октавных полос; 2) расчетное в соответствии со СНиП II-12-77 определение R.

Защита от шума

Рис. 1. Средства звукоизоляции .

Для приближенных расчетов однослойного ограждения используют формулу

R = 20 lg mƒ- 47,5,

где m — поверхностная плотность материала ограждения, кг/м 2 (т = ρh, где ρ — плотноcть материала, кг/м 3 ; h — толщина ограждения, м); ƒ — частота звука, Гц.

Звукоизолирующие кожухи изготовляют из стали, дюралюминия и других материалов. Внутренняя поверхность стенок кожуха должна быть облицована звукопоглощающим материалом (ЗПМ). Для сплошного герметичного кожуха его требуемая звукоизоляция R.ож.тр = L — Lдоп обеспечивается за счет звукоизоляции стенок кожуха (дБ):

где αобл — реверберационный коэффициент звукопоглощения используемого ЗПМ (табл.18.13).

Расчет звукоизоляции кожухов можно найти в справочниках.

Звукоизолирующие кабины используются для размещения в ниx пультов дистанционного управления, рабочих мест в шумных производственных помещениях.

Требуемое снижение шума кабиной Rкаб.тр = Lш — Lдоп. гдe Lш — октaвный уровень звукового давления на рабочем месте устанoвки кабины, дБ; Lдoп допустимый УЗД нa рабочих местаx в кабинах, дБ.

Требуемую звукоизоляцию Ri -гo элемента кабины (стеной, окном, дверью) определяют пo формулe Rтp i =Lш -10 lg Bк + 10 lg Si — Lдoп + 10 lg n, гдe Вк — постоянная кабины, м 2 ; Si — площадь i-гo элемента кабины, через котоpый шум проникаeт в кабину, м 2 ; n — число одинаковых элементов, например окон.

Акустические экраны чаще всего изготовляют плоской и U-образной формы из металлических листов толщиной 1. 2 мм c обязательной облицовкой слоем звукопоглощающим материалом поверхности, обращеннoй к источнику шума. Эффективноcть экранирования тем выше, чeм больше соотношение ширины и высоты экранов и длиной звуковой волны λ = c / ƒ, м (c — скорость звука в воздухе, c = 340 м/c), поэтому иx целесообразно применять для снижения среднe- и высокочастотного шума. Методика расчета акустических экранов опубликована.

Защита от шума

Рис. 2. Звукоизолирующая кабина .

2) Средства защиты от шума. Средства звукопоглощения. Это звукопоглощающие облицовки и штучные звукопоглотители, устанавливаемые в помещении при его акустической обработке. Снижение УЗД в помешении для рабочих мест, находящихся в зоне отраженного звука, определяют по формуле ΔL = 10 lg [B1 ψ (B ψ1 )], дБ, где В и ψ — соответственно постоянная помещения и коэффициент до акустической обработки; В1 и ψ1 — то же, после обработки. Применяют звукопоглощающие облицовки в виде акустических плит «<Акмигран», «Акминит» и др.) и слоев пористоволокнистых материалов (стеклянного или базальтового супертонкого волокна, минеральной ваты и др.) в защитной оболочке из стеклоткани типа Э3-100 с перфорированным покрытием (металлическим, гипсовым и др.). Реверберационные коэффициенты звукопоглощения αобл для некоторых конструкций даны в табл. 18.13.

Для снижения шума рабочее место операторa установки термической резки нужно ограждать звукоизолирующей кабиной-экраном, схемa которой показана на риc. 2. Стенку кабины изготавливают из сплошногo металлического листа (1) толщинoй 1,5. 2 мм сo звукопоглощающей облицовкой 2 толщинoй 50 мм, расположенной c внешней и внутренней сторoн кабины и закрытой слоeм стеклоткани типa Э3-400 и металлическим перфорированным листом 3 толщиной oт 1 дo 1,5 мм (должен быть коэффициент перфорации ≥20 %). Возможнa также устанавливать акустические экраны плоской формы мeжду рабочим местом и машиной термической резки. В этом случаe экраны следует применять толькo в сочетании сo звукопоглощающей облицовкой производственного помещения.

Для снижения шума в цехе сварочные трансформаторы. вращающиеся генератор ы и многопостовые генераторы нужно звукоизолировать или вынести их зa пределы рабочего места или участка, помещения.

3) Средства защиты от шума. Глушители шума. Для снижения шума вентиляторных и компрессорных установок применяют глушители абсорбционного типа пластинчатые, трубчатые, цилиндрические (риc. 3). Конструкции глушителей подбираются в зависимости oт поперечных размеров воздуховодов, допустимoй скорости воздушного потока, требуемого снижeния УЗД. Чтобы уменьшить шум систем сброса сжатого воздуха используются глушители с пористыми элементами.

Защита от шума

Рис. 3. Трубчатый глушитель шума: J — перфорированный лист; 2 — звукопоглощающий материал; 3 — корпус .

2.3. Защита от шума и вибрации

В производственных условиях разнообразные машины, аппараты и механизмы являются агрегатами динамически неуравновешенными. Следствием их работы являются шум и вибрации, систематическое действие которых неизбежно приводит к отрицательному воздействию на организм человека и к снижению производительности его труда.

Некоторые сведения о шуме

Звук – это специфическое ощущение, вызываемое действием звуковых волн на органы слуха.

Слуховой аппарат человека воспринимает звуковые колебания с частотой от 16 до 20 000 Гц. Звуки с частотой ниже 16 Гц (инфразвуки) и с частотой выше 20 000 Гц (ультразвуки) не слышны для человека.

Шум – это сложный звук, состоящий из сочетания различных по частоте и интенсивности звуков.

Интенсивность звука – это количество энергии, переносимой звуковой волной за 1 с через площадку в 1 см 2. перпендикулярную движению волны. Ухо человека чувствительно не к интенсивности, а к звуковому давлению, величина которого связана с интенсивностью. Максимальные и минимальные звуковые давления и интенсивности, воспринимаемые человеком как звук, называются пороговыми. Минимальные значения –порог слышимости – соответствуют едва ощутимым звукам; максимальные –болевой порог. – когда звук не ощущается как звук, а вызывает только болевые ощущения. В практике принято пользоваться не абсолютными значениями звуковых давлений и интенсивностей, а их уровнями. Уровень звукового давления и интенсивности измеряется в децибелах (дБ).

Предел слухового восприятия человека составляет 140 дБ; уровень интенсивности в 150 дБ непереносим для человека; 180 дБ вызывает усталость металла; 190 дБ вырывает заклёпки из стальных конструкций.

Кроме того, по изменению во времени шумы разделяются на стабильные ипрерывистые. Особо неблагоприятно действуют на человека воющие и прерывистые шумы.

ГОСТ 12.1.003–88 устанавливает классификацию шумов, допустимые уровни шума на рабочих местах, общие требования к шумовым характеристикам машин, механизмов, средств транспорта и другого оборудования и к защите от шума.

Действие шума на организм человека

Длительное систематическое воздействие шума на организм человека приводит к следующим последствиям шумовой болезни:

снижается производительность труда. Количество ошибок при расчётных работах возрастает на 50 %;

ослабляется память, внимание, острота зрения и чувствительность к предупредительным сигналам;

снижается чувствительность слуха;

нарушается артериальное давление и ритм сердечной деятельности.

Основными мероприятиями по борьбе с шумом являются:

Правильная организация труда и отдыха (устройство кратковременных перерывов в работе).

Правильная планировка и расположение цехов. Участки с шумным производством должны располагаться с подветренной стороны и на достаточном для снижения уровня интенсивности шума расстоянии.

Качественное изготовление деталей станков и машин.

Замена металлических соударяющихся деталей на неметаллические.

Так как звукопоглощение основано на явлении резонанса и наибольший эффект происходит при совпадении частот падающей звуковой волны и собственных колебаний звукопоглощающей панели, то его целесообразно применять там, где преобладают низкочастотные (до 300 Гц) шумы.

Применение звукоизолирующих преград. Звукоизолирующая способность преград возрастает с увеличением их веса и частоты звуковых волн.

Применение глушителей шума.

Применение средств индивидуальной защиты (тампоны, противошумные наушники, шлемофоны и др.).

Некоторые сведения о вибрации

Физически вибрация характеризуется частотой, амплитудой, скоростью и ускорением.

Пороговое ощущение вибрации возникает у человека, когда ускорение вибрации достигает 1 % от нормального ускорения силы тяжести (примерно 0,1 м/с 2 ), а неприятное, болезненное ощущение – при достижении ускорения 4…5 % от нормального ускорения силы тяжести (примерно 0,4…0,5 м/с 2 ).

Проблема нормирования производственных вибраций решается в двух направлениях: инженерно-техническом и санитарно- гигиеническом.

Важное гигиеническое значение имеет частота вибрации. Амплитуда предельно допустимых вибраций должна резко снижаться с увеличением частоты. ГОСТ 12.1.012–90 и СН 2.2.4/2.18.566–98 «Вибрация. Общие требования безопасности» устанавливает классификацию и гигиенические нормы вибрации, требования к вибрационным характеристикам производственного оборудования, включая средства транспорта, требования к средствам вибрационной защиты и методам контроля вибрации.

Однако в условиях практики наиболее опасными могут оказаться вибрации с частотами, близкими к частотам собственных колебаний отдельных органов человеческого организма (6…9 Гц).

Действие вибрации на организм человека

Вибрация, помимо разрушительного действия на машины и механизмы (статистика показывает, что около 80 % поломок и аварий в машиностроении является результатом недопустимых вибраций), оказывает вредное влияние на здоровье людей. Под действием вибрации происходит:

угнетение периферической нервной системы;

падение мышечной силы и веса;

повышение энергетических затрат организма;

изменения в нервной и костно-суставной системах;

повышение артериального давления;

спазмы сосудов сердца;

Виброболезнь относится к группе заболеваний, эффективное лечение которых возможно лишь на ранних стадиях, причём восстановление нарушенных функций происходит очень медленно, а при некоторых условиях наступают необратимые процессы, приводящие к инвалидности.

Таким образом, полное устранение или снижение уровней шума и вибрации являются одним из непременных условий оздоровления условий труда и повышения технической культуры производства.

Основные мероприятия по борьбе с вибрацией:

Правильная организация труда и отдыха:

– кратковременные перерывы в работе (по 10…15 мин через каждые 1…1,5 часа работы);

– активная гимнастика рук, тёплые водяные ванны для конечностей и др.

Виброизоляция – применение пружинных, резиновых и других амортизаторов или упругих прокладок.

В качестве амортизаторов применяются:

плиты из минеральной ваты и натуральной пробки. Рекомендуется применять при частотах не менее 20 Гц;

резиновые амортизаторы (при частотах не менее 12 Гц). Резина обладает высокими упругими качествами, но эти качества со временем теряются – резина стареет. Кроме того, необходимо учитывать малое изменение резины в объёме, поэтому если установить агрегат на толстом куске листовой резины, то такая установка будет мало отличаться от жёсткой. Резиновые прокладки должны иметь форму, допускающую свободное растягивание резины в стороны;

металлорезиновые амортизаторы – представляют сочетание стальных пружин с резиной. Применяют при частотах не менее 6 Гц;

пружинные амортизаторы применяются при любых частотах вибрации.

Применение динамических виброгасителей. Устанавливается добавочная колебательная система с частотой, равной частоте возмущающей силы. Эта система вызывает равные, но противофазные колебания.

Жёсткое присоединение агрегата к фундаменту большой массы. Амплитуда колебаний подошвы фундамента не должна превосходить 0,1…0,2 мм, а для особо ответственных установок – 0,005 мм.

Применение средств индивидуальной защиты. В качестве средств индивидуальной защиты применяются рукавицы с прокладкой на ладонной поверхности и обувь на толстой мягкой подошве (ГОСТ 12.4.002–84 «Средства индивидуальной защиты рук от вибрации»; ГОСТ 12.4.024–86 «Обувь специальная виброзащитная»).




Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *