Дробление

Сущность стадии дробления.Дробление — это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша — бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте— росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.

Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость — бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы — бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.

Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.

Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса — Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления — в направлении наибольшей протяженности этой зоны.

В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера — микромеры, на вегетативном — четыре более крупных — макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.

В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.

При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.

Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.

Рис. 7.2. Дробление у хордовых животных с разным типом яйцеклетки.

А — ланцетник; Б — лягушка; В — птица; Г — млекопитающее:

I —два бластомера, II— четыре бластомера, III— восемь бластомеров, IV— морула, V— бластула;

1 —борозды дробления, 2 —бластомеры, 3— бластодерма, 4— бластоиель, 5— эпибласт, 6— гипобласт, 7—эмбриобласт, 8— трофобласт; размеры зародышей на рисунке не отражают истинных соотношений размеров

Рис. 7.2. Продолжение

К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки. Некоторые типы дробления и бластул представлены на рис. 7.2 и схеме 7.1. Более подробное описание дробления у млекопитающих и человека см. разд. 7.6.1.

Особенности молекулярно-генетических и биохимических процессов при дроблении. Как было отмечено выше, митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.

Например, весь цикл деления в яйцах морского ежа длится 30—40 мин при продолжительности S-фазы всего 15 мин. gi- и 02-периоды практически отсутствуют, так как в цитоплазме яйцевой клетки создан необходимый запас всех веществ, и тем больший, чем она крупнее. Перед каждым делением происходит синтез ДНК и гистонов.

Скорость продвижения репликационной вилки по ДНК в ходе дробления обычная. Вместе с тем в ДНК бластомеров наблюдается больше точек инициации, чем в соматических клетках. Синтез ДНК идет во всех репликонах одновременно, синхронно. Поэтому время репликации ДНК в ядре совпадает с временем удвоения одного, притом укороченного, репликона. Показано, что при удалении из зиготы ядра дробление происходит и зародыш доходит в своем развитии почти до стадии бластулы. Дальнейшее развитие прекращается.

В начале дробления другие виды ядерной активности, например транскрипция, практически отсутствуют. В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, например, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.

В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для деления клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее. В пользу этого свидетельствуют данные о наличии региональных различий в синтезе РНК и белков между бластомерами. Иногда эти РНК и белки начинают действовать на более поздних стадиях.

Важную роль в дроблении играет деление цитоплазмы — цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран

Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. Поэтому цитоплазма разных бластомеров различается по химическому составу.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

1.5.2. Дробление. Типы дробления

Дробление – этомитотическое деление зиготы. Между делениями интерфаза отсутствует, а удвоение ДНК начинается в телофазу предыдущего деления. Не происходит также и рост зародыша, то есть объем зародыша не изменяется и величиной равен зиготе. Клетки, образовавшиеся в процессе дробления, называются бластомерами, а зародыш – бластулой. Характер дробления обусловлен типом яйцеклетки (рис. 3)

Наиболее простой и филогенетически самый древний тип дробления — полное равномерное дробление изолецитальных яиц. Бластула, образующаяся в результате полного дробления, называется целобластулой. Это однослойная

бластула с полостью в центре.

Бластула, образующаяся в результате полного, но неравномерного дробления, имеет многослойную бластодерму с полостью ближе к анимальному полюсу и называется амфибластулой.

Дробление

Рис. 3. Типы яиц и соответствующие им типы дробления

Дробление Дробление

Полное (голобластическое) неполное (меробластическое)

Дробление Дробление Дробление Дробление Дробление

целобластула амфибластула стерробластула дискобластула перибластула

Неполное дискоидальное дробление заканчивается образованием бластулы, в которой бластомеры расположены только на анимальном полюсе, в то время как вегетативный полюс состоит из нерасчлененной желточной массы. Под слоем бластодермы в виде щели расположена бластоцель. Такой тип бластулы называется дискобластулой.

Особым типом дробления является неполное поверхностное дробление членистоногих. Их развитие начинается с многократного дробления ядра, расположенного в центре яйца среди желточной массы. Образовавшиеся при этом ядра перемещаются к периферии, где расположена бедная желтком цитоплазма. Последняя распадается на бластомеры, которые своим основанием переходят в неразделенную центральную массу. Дальнейшее дробление ведет к образованию бластулы с одним слоем бластомеров на поверхности и желтком внутри. Такая бластула называется перибластулой .

Необходимо особо сказать о дроблении яиц млекопитающих. В яйцах млекопитающих мало желтка. Это алецитальные или олиголецитальные яйца по количеству желтка, а по распределению желтка по яйцеклетке — это гомолецитальные яйца. Дробление у них полное, но неравномерное, уже на ранних стадиях дробления наблюдается различие бластомеров по их величине и по окраске: светлые располагаются по периферии, темные в центре. Из светлых клеток образуется окружающий зародыш трофобласт, клетки которого выполняют вспомогательную функцию и непосредственно в формировании тела зародыша не участвуют. Клетки трофобласта растворяют ткани, благодаря чему зародыш внедряется в стенку матки. Далее клетки трофобласта отслаиваются от зародыша, образуя полый пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Зародыш в это время имеет вид узелка, расположенного на внутренней стенке трофобласта. Бластула млекопитающих имеет небольшую центрально расположенную бластоцель и называется стерробластулой. В результате дальнейшего дробления зародыш имеет форму диска, распластанного на внутренней поверхности трофобласта.

Таким образом, дробление зародышей различных многоклеточных животных хотя и идет по-разному, но в конечном счёте заканчивается тем, что оплодотворенная яйцеклетка (одноклеточная стадия развития) в результате дробления превращается в многоклеточную бластулу. Наружный слой бластулы называется бластодермой. а внутренняя полость — бластоцелью или первичной. полостью. где накапливаются продукты жизнедеятельности клеток.

Биологическое значение дробления

Переход к многоклеточности

Увеличение ядерно-цитоплазматического отношения

На основе ряда существенных характеристик (полнота, равномерность и симметрия деления) выделяют ряд типов дробления. Типы дробления во многом определяются распределением веществ (в том числе, желтка ) по цитоплазмеяйца и характером межклеточных контактов, которые устанавливаются между бластомерами.

Дробление может быть

полным (голобластическим) или неполным (меробластическим),

равномерным (бластомеры более-менее одинаковы по величине) и

неравномерным (бластомеры не одинаковы по величине, выделяются две — три размерные группы, обычно называемые макро- и микромерами), наконец по характеру симметрии различают радиальное, спиральное, различные варианты билатеризованных и анархическое дробление. В каждом из этих типов выделяют ряд вариантов.

По степени полноты деления:

Голобластическое дробление

Плоскости дробления разделяют яйцо полностью. Выделяют полное равномерное дробление, при котором бластомеры не различаются по размерам (такой тип дробления характерен для гомолецитальных яиц), и полное неравномерное дробление, при котором бластомеры могут существенно различаться по размерам. Такой тип дробления характерен для умеренно телолецитальных яиц.

Меробластическое дробление Дискоидальное

ограничено относительно небольшим участком у анимального полюса,

плоскости дробления не проходят через всё яйцо и не захватывают желток.

Такой тип дробления типичен длятелолецитальных яицбогатых желтком (птицы. рептилии ). Такое дробление называют также дискоидальным. так как в результате дробления на анимальном полюсе образуется небольшой диск клеток (бластодиск ).

Дискоидальное дробление (от греч. dískos — диск и éidos — вид), один из типов дробления яиц у животных с телолецитальными яйцами (скорпионы, головоногие моллюски, хрящевые и костистые рыбы, пресмыкающиеся и птицы). При Дискоидальном дробление делится лишь небольшой диск относительно свободной от желтка и содержащей ядро цитоплазмы.

Поверхностное

ядро зиготы делится в центральном островке цитоплазмы ,

получающиеся клетки перемещаются на поверхность яйца. образуя поверхностный слой клеток (бластодерму ) вокруг лежащего в центре желтка.

Такой тип дробления наблюдается учленистоногих.

По типу симметрии дробящегося яйца

Ось яйца является осью радиальной симметрии. Типично дляланцетника,осетровых,амфибий,иглокожих . круглоротых.

В анафазе бластомеры разворачиваются. Отличается лево-правой дисимметрией (энантиоморфизм) уже на стадии четырёх (иногда двух) бластомеров. Типично для некоторыхмоллюсков,кольчатыхиресничных червей .

Имеется 1 плоскость симметрии. Типично дляаскариды .

Бластомеры слабо связаны между собой, сначала образуют цепочки. Типично длякишечнополостных.

Энуклеация — в гистологии удаление клеточного ядра.

Эпибласт = Эктодерма, иначе эктобласт, иначе эпибласт — наружный пласт зародыша Metazoa, а равно и наружный слой стенки тела низших Metazoa (многоклеточных).

Дидактическая единица №3 – Законы генетики

АЛЛОПОЛИПЛОИДИЯ (от алло. и полиплоидия ) — наследственное изменение в клетках растений, реже животных, заключающееся в кратном увеличении числа наборов хромосом при межвидовых или межродовых скрещиваниях. Встречается в природе и может быть получена целенаправленно (ржано-пшеничные, капустно-редечные гибриды). Имеет важное значение в процессах видообразования у растений.

(G. Fanconi, род. в 1892 г. швейц. педиатр ; син. Фанкони синдром ) наследственная болезнь. характеризующаяся гипоплазией костного мозга, панцитопенией, а также аномалиями развития кожи (гиперпигментация ), костной системы (недоразвитие 1 пястной или лучевой кости) и (или) внутренних органов (почек, селезенки); наследуется по аутосомно-рецессивному типу.

ДНК-гираза когда расплетает, она спираль сдвигает на границе репликона и образуется суперспираль, необычайно крутая раскрутка. Чтобы её ликвидировать появляются свевилазы . которые способны произвести надрезание в местах сверхскрутки в районе фосфатного мостика. Формируется шарнир Кернса и через него суперспираль сбрасывается. Появляется фермент хеликаза (SSB), который стабилизирует её, сам биосинтез начинается с синтеза праймера (затравки), причем затравка состоит из РНК. Появляется особый мультиферментный комплекс — праймосома. В ней 3 фермента: 1). Праймаза (синтезирует РНК-затравку) 2). ДНК-белок (ДНК зависимая рибонуклеоизид 3 фосфатаза) 3). N’-белок (ДНК зависимая отефаза) ДНК-белок и N’-белок определяет начало репликации, с которой и начинается затравка. Обычно это кусочек из 6 нуклеотидов. Далее праймосома перемещается на соседнюю точку Ори. Первая нить 3’5′ — лидирующая, а вторая 5’3′ — запаздывающая. После этого к праймеру присоединяется ДНК-полимераза-3. Начинается рост цепи ДНК — элонгация, которая идет до терминирующих кодонов, находящихся у точки Ори соседнего репликона. После этого появляется фермент РНКаза, которая удаляет праймер, при этом образуется пустота, её застраивает фермент ДНК-полимераза-1. После биосинтеза у соседних репликонов образуются фрагменты Оказаки. сливающиеся воедино за счет ДНК-лигазы. После этого в этом участке ДНК происходит восстановление спиральности. Это происходит за счет топоизомеразы-3, которая представляет смесь гиразы и w-белка. Таким образом происходит полный синтез ДНК. В итоге ДНК репликация идет следующим образом: 1). ДНК-гираза раскручивает участок ДНК-репликон, начиная с точки Ори. 2). На границе создается суперспираль. 3). ДНК- свевилаза создает шарнир Кернса и суперспираль сбрасывается. 4). Хеликаза (SSB) стабилизирует одноцепочечные нити не давая слиться. 5). Праймосома. Мобильный промотор репликации за счет проймазы ДНА-белка создает РНК затравку в точке Ори. 6). ДНК-полимераза -3 синтезирует молекулу ДНК — фрагмент Оказаки. 7). РНКаза удаляет праймер затравку. 8). ДНК-полимераза-1 застраивает Брешь 9). ДНК —Лигаза сшивает фрагменты Оказаки 10). Топоизомераза-3 формирует спираль.

Дробление ДРОБЛЕНИЕ (а. breaking, crushing; н. Brechen, Zerkleinerung, Quetschen; ф. broyage, соncassage; и. molienda) — процесс разрушения кусков руды. угля и другого твёрдого материала с целью получения требуемой крупности (более 5 мм), гранулометрического состава или степени раскрытия минералов .

Дробление основано на действии внешних сил — сжатии, растяжении, изгибе или сдвиге, которые проявляются в максималльной степени в ослабленных сечениях куска, вызванных дефектами его структуры (размером и формой), слоистостью. пористостью и трещиноватостью. Для процессов дробления наиболее важные характеристики — прочность (крепость) и дробимость кусков. Для энергетической оценки дробления выдвинуто и используется в расчётах несколько гипотез: о пропорциональности элементарной работы дробления приращению площади поверхности куска или квадрату его диаметра (П. Риттингер. 1867); о пропорциональности элементарной работы деформации куска изменению его первоначального объёма или куба его диаметра (В. Л. Кирпичёв, 1874; А. Кик, 1885); о пропорциональности элементарной работы, затрачиваемой на дробление куска, изменению его первоначального объёма и приращению площади поверхности куска (П. А. Ребиндер. 1&44); о связи напряжения на концах трещин куска и критической длиной трещины (А. Гриффитс, 1&20); о пропорциональности элементарной работы дробления среднегеометрического приращению объёма и площади поверхности (Ф. Бонд, 1950).

Предпочтительные области применения гипотез: при крупном дроблении (приращение поверхности мало) работу дробления определяют по гипотезе Кирпичёва; при мелком дроблении (измельчении. истирании ) — по гипотезе Риттингера. Закон Бонда достаточно точно применим при среднем дроблении. Теория дробления позволяет количественно описывать процессы дробления в машинах различных типов и их параметры — работу дробления, мощность двигателя, производительность, наибольшие усилия дробления и т.п.

Дробление может быть осуществлено следующими методами: раздавливания (рис. 1, а), наступающего вследствие превышения напряжений деформации предела прочности материала на сжатие; раскалывания (рис. 1, б) — из-за расклинивания (растяжения) и последующего разрыва куска; излома (рис. 1, в) — из-за изгиба; срезывания (рис. 1, г) — из-за сдвига; истирания, проявляющегося в малой степени (рис. 1, д) — из-за сдвига и последующего срезывания; удара (рис. 1, е) — из-за действия напряжений сжатия, растяжения, изгиба и сдвига. Раздавливание применяется, как правило, при крупном и среднем дроблении твёрдых горных пород и углей. раскалывание или удар — преимущественно для хрупких и вязких пород (углей, известняков. асбестовых руд и т.п.). Предел прочности кусков на растяжение в десятки раз меньше, однако по конструктивным соображениям в современной практике дробления основным разрушающим воздействием является раздавливание.

По виду реализации методов дробления его делят на механическое (наиболее распространённое), пневматическое, или взрывное, электрогидравлическое, электроимпульсное, электротермическое, аэродинамическое, по способу воздействия на материал — на статическое и динамическое. Статические способы механического дробления — раздавливание, раскалывание, излом — проводят в щёковых. конусных и валковых дробилках. Динамические способы дробления — удар. истирание (роторные дробилки ), раскалывание, раздавливание (стержневые дробилки-дезинтеграторы ). По крупности конечного продукта выделяют крупное (100-350 мм), среднее (40-100 мм), мелкое дробление (5-40 мм), по технологическому назначению — подготовительное (для подготовки материала к обогащению или др. видам переработки), окончательное (когда продукты дробления являются товарными, например, при выпуске сортовых углей), избирательное (при котором один из компонентов материала, отличающийся меньшей прочностью, под действием одинаковой внешней силы разрушается интенсивнее другого, более прочного).

Дробление Процесс дробления обычно соединяют с предварительным грохочением, когда весь исходный материал сначала поступает на грохот. а в дробилку направляются лишь крупные куски, подрешётный продукт грохота уходит далее, минуя дробилку. Существуют открытый и замкнутый циклы дробления. (рис. 2).

При открытом цикле дробления продукт проходит через дробилку только один раз, при замкнутом — продукт из дробилки поступает на грохот, недостаточно раздробленные куски вновь направляются в дробилку на додрабливание, а мелкие — на последующую обработку. При замкнутом цикле дробления улучшается качество продукта (гранулометрический состав однороден), снижается расход энергии и износ частей дробилки. В зависимости от требуемой крупности готового продукта для получения высокой степени дробления применяют последовательно несколько стадий дробления: при дроблении руд цветных металлов. как правило, 2, 3 или 4, руд чёрных металлов и угля 2 или 3 стадии.

Развитие теории дробления связывается с уточнением закономерностей и конструктивной разработкой износоустойчивых машин и аппаратов с минимальными удельными энергозатратами дробления.

Дробление яйцеклетки. Этапы дробления яйцеклетки.

Дробление представляет собой серию митотических делений зиготы с образованием многих дочерних клеток (бластомеров) меньшего размера. Митотические деления зиготы, а в последующем — бластомеров происходят с увеличением числа клеток, но без увеличения их массы, поэтому именуются дроблением.

У человека дробление не имеет принципиальных отличий от такового у других представителей позвоночных, однако протекает гораздо медленнее. Дробление полное, или голобла-стическое (борозды дробления проходят через весь зародыш), неравномерное (в результате дробления образуются дочерние клетки — бластомеры неравной величины) и асинхронное (разные бластомеры дробятся с различной скоростью, поэтому зародыш на отдельных стадиях дробления содержит нечетное число клеток).

Первое деление дробления продолжается в среднем около 30 часов, последующие — более кратковременны (около 20-24 часов). В процессе дробления зародыш перемещается по маточной трубе и на 6-е сутки развития попадает в полость матки.

Дробление

Бластомеры первой генерации у человека, как и зигота, тотипотентны (каждый бластомер способен развиться в полноценный организм). До стадии 8 бластомеров клетки зародыша формируют рыхлую неоформленную группу, и только после третьего деления устанавливают между собой плотные контакты, образуя компактный клеточный шар из 16 бластомеров, именуемый морулой. Компактизация создает условия для развития наружной клеточной массы и внутренней клеточной массы.

Последняя — это материал будущего тела зародыша (эмбриобласта) и внезародышевых органов. Бластомеры наружной клеточной массы — мелкие и многочисленные (их примерно в 10 раз больше, чем клеток внутренней клеточной массы), являются источником развития трофобласта.

Когда морула попадает в проксимальный отдел маточной трубы и далее — в полость матки, через ее прозрачную зону начинает проникать содержащаяся в маточной трубе и матке жидкость. Происходит кавитация морулы. Сначала жидкость накапливается между клетками и образует небольшие промежутки, которые затем сливаются в единую полость внутри морулы (бластоцель). В образовании жидкости и кавитации участвуют также клетки трофобласта, секретирующие жидкость.

С момента появления полости зародыш именуется бластоцистой. Клетки внутренней клеточной массы бластоцисты локализованы на одном из полюсов и обращены в полость. Клетки наружной клеточной массы уплощаются и, ограничивая полость, формируют оболочку бластоцисты — трофобласт. В период перемещения дробящегося зародыша по маточной трубе большое значение имеет тот факт, что сохраняющаяся прозрачная зона предотвращает прилипание бластоцисты к стенкам трубы и зародыш попадает в полость матки. Здесь он освобождается от прозрачной зоны и начинает имплантироваться (погружаться) в слизистую оболочку матки. Имплантация зародыша протекает параллельно с гаструляцией.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *