Ламинарное движение

Ламинарное движение в потоке устанавливается лишь на некотором расстоянии от входа потока в трубу. У входа начинает формироваться пограничный слой заторможенной жидкости ламинарного характера. В середине потока существует постоянная скорость. По мере удаления от входа ламинарный слой растет, в конце концов сходится на оси трубы и, начиная с этого сечения, в трубе будет ламинарное движение потока. Таким образом, профиль скоростей постепенно становится параболическим, характерным для ламинарного потока.  [2]

Ламинарное движение обычно осложняется естественной конвекцией, возникающей вследствие разности температур по сечению потока. Теплоотдача усиливается при наличии свободного движения жидкости, вызывающего некоторое ускорение потока, особенно заметное у вертикальных труб при противоположных направлениях вынужденного и свободного движения.  [3]

Ламинарное движение можно рассматривать как движение отдельных слоев жидкости, происходящее без перемешивания частиц.  [4]

Ламинарное движение имеет место в гладких трубах при низких скоростях движения жидкости и при малой ее вязкости. При больших скоростях и при большой вязкости жидкости движение в трубах становится турбулентным.  [6]

Ламинарное движение характерно для области малых скоростей ( Re до 2000 — 3000) и поэтому, как правило, в камерах сгорания газотурбинных двигателей ламинарный поток не имеет места.  [7]

Ламинарное движение обычно осложняется естественной конвекцией, возникающей вследствие разности температур по сечению потока. Теплоотдача усиливается при наличии свободного движения жидкости, вызывающего некоторое ускорение потока, особенно заметное у вертикальных труб при противоположных направлениях вынужденного и свободного движения.  [8]

Ламинарное движение в пограничном слое, как и всякое другое ламинарное течение, при достаточно больших числах Рей-ноль дса становится в той или иной степени неустойчивым.  [9]

Ламинарное движение подчиняется линейному закону фильтрации. Этот закон был установлен в 1856 г. Дарси на основании опытов по фильтрации в песке.  [11]

Ламинарное движение в пограничном слое, как и всякое другое ламинарное течение, при достаточно больших числах Рей-нольдса становится в той или иной степени неустойчивым.  [12]

Ламинарное движение между концентрическими цилиндрами давно привлекало внимание исследователей. Течение несжимаемой жидкости, созданное вращением любого цилиндра с постоянной угловой скоростью Q, известно как поток Куэтта.  [13]

Ламинарное движение в трубке осуществляется при небольших перепадах давления, и по мере увеличения перепада давления характер течения жидкости может измениться. Основная особенность турбулентного режима течения вязкой жидкости заключается в беспорядочном характере траекторий частиц жидкости и в наличии беспрерывных относительных перемещений частиц, позднее названных пульсациями.  [14]

Ламинарное движение перех-одит при определенных условиях в турбулентное, и наоборот.  [15]

Страницы:    9ensp;9ensp;1  9ensp;9ensp;2  9ensp;9ensp;3  9ensp;9ensp;4

Поделиться ссылкой:

Ламинарное и турбулентное движение жидкости

Как показывают опыты, возможны два режима течения жидкостей и газов: ламинарный и турбулентный.

Ламинарным называется сложное течение без перемешивания частиц жидкости и без пульсаций скоростей и давлений. При ламинарном движении жидкости в прямой трубе постоянного поперечного сечения все линии тока направлены параллельно оси труб, отсутствуют поперечные перемещения жидкости. Однако, ламинарное движение нельзя считать безвихревым, так как в нем хотя и нет видимых вихрей, но одновременно с поступательным движением имеет место упорядоченное вращательное движение отдельных частиц жидкости вокруг своих мгновенных центров с некоторыми угловыми скоростями.

Турбулентным называется течение, cопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. При турбулентном течении наряду с основным продольным перемещением жидкости происходят поперечные перемещения и вращательное движение отдельных объемов жидкости.

Изменение режима течения происходит при определенном соотношении между скоростью V, диаметром d, и вязкостью υ. Эти три фактора входят в формулу безразмерного критерия Рейнольдса Re = Vd /υ, поэтому вполне закономерно, что именно число Re. является критерием, определяющим режим течения в трубах.

Число Re. при котором ламинарное движение приходит в турбулентное, называется критическим Reкр.

Как показывают опыты, для труб круглого сечения Rекр = 2300, то есть при Re < Reкр течение является ламинарным, а при Rе > Reкр – турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re = 4000, а при Re = 2300 – 4000 имеет место переходная критическая область.

Смена режима течения при достижении Re кр обусловлена тем, что одно течение теряет устойчивость, а другое – приобретает.

Рассмотрим более подробно ламинарное течение.

Одним из наиболее простых видов движения вязкой жидкости является ламинарное движение в цилиндрической трубе, а в особенности его частный случай — установившееся равномерное движение. Теория ламинарного движения жидкости основывается на законе трения Ньютона. Это трение между слоями движущейся жидкости является единственным источником потерь энергии.

Рассмотрим установленное ламинарное течение жидкости в прямой трубе с d = 2 r0

Чтобы исключить влияние силы тяжести и этим упростить вывод допустим, что труба расположена горизонтально.

Пусть в сечении 1-1 давление равно P1 а в сечении 2-2 – P2.

Ввиду постоянства диаметра трубы V = const, £ = const, тогда уравнение Бернулли для выбранных сечений примет вид :

отсюда , что и будут показывать пьезометры, установленные в сечениях.

В потоке жидкости выделим цилиндрический объем.

Запишем уравнение равномерного движения выделенного объема жидкости, то есть равенство 0 суммы сил, действующих на объем.

Отсюда следует, что касательные напряжения в поперечном сечении трубы изменяются по линейному закону в зависимости от радиуса.

Если выразить касательное напряжение t по закону Ньютона, то будем иметь

Знак минус обусловлен тем, что направление отсчета r ( от оси к стенке противоположного направления отсчета y ( от стенки)

И подставить значение t в предыдущее уравнение, то получим

Отсюда найдем приращение скорости.

Выполнив интегрирование получим.

Постоянную интегрирования найдем из условия при r = r0; V = 0

Скорость по окружности радиусом r равна

Это выражение является законом распределения скорости по сечению круглой трубы при ламинарном течении. Кривая, изображающая эпюру скоростей, является параболой второй степени. Максимальная скорость, имеющая место в центре сечения при r = 0 равна

Применим полученный закон распределения скоростей для расчета расхода.

Площадку dS целесообразно взять в виде кольца радиусом r и шириной dr

После интегрирования по всей площади поперечного сечения, то есть от r = 0, до r = r0

Для получения закона сопротивления выразим; (через предыдущую формулу расхода)

µ=9upsilon;9rho; r0 = d/2 γ = ρg. Тогда получим закон Пуарейля ;

188.123.231.15 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Справочник химика 21

Движение жидкостей ламинарное

 9ensp;9ensp;9ensp;В зависимости от взаимных перемещений отдельных частиц различают два режима движения жидкости ламинарный и турбулентный. [c.15]

 9ensp;9ensp;9ensp;Характер движения жидкости. ламинарный и турбулентный режим его определяется взаимодействием сил в движущейся жидкости. Сумма действующих сил в движущейся жидкости, согласно закону механики, определяется произведением рение  [c.49]

 9ensp;9ensp;9ensp;Остановимся, во-первых, на ламинарном режиме движения жидкости. Ламинарным движением называется параллельноструйное движение жидкости. в котором отсутствует перемещение ее частиц в направлении, ортогональном к направлению движения. Короче, ламинарное движение жидкости — это движение жидкости эквидистантными слоями. стратифицированное движение. Поэтому перенос теплоты и импульса в направлении, ортогональном к направлению движения, возможен только за счет молекулярного обмена. В этом случае составляющая тензора касательного напряжения трения является линейной функцией от величины, соответствующей скорости деформации сдвига (гипотеза Ньютона). [c.6]

 9ensp;9ensp;9ensp;Со времен своего зарождения гидравлика развивалась независимо от теоретической гидромеханики, развитие которой главным образом проходило в математическом направлении на основе исследования движения лишенной трения, так называемой идеальной жидкости. Разрыв между теоретической гидромеханикой и практической гидравликой тормозил развитие науки о движении жидкости. Сближение этих направлений следует отнести ко второй половине XIX и началу XX веков. Существенную роль в этом сыграла теория размерности и подобия, которую применительно к движению жидкостей развил О. Рейнольдс (1883), доказавший существование двух режимов движения жидкостей — ламинарного и турбулентного. Этим самым бьша усилена научная база практической гидравлики, позволившая обобщить многочисленные экспериментальные данные и сделать важные выводы. [c.5]

 9ensp;9ensp;9ensp;Одним из важнейших вопросов, связанных с изучением законов движения вязких жидкостей. является определение потерь напора движущейся жидкостью. Многочисленные экспериментальные и теоретические исследования показали, что на величину этих потерь решающее влияние оказывает режим движения жидкости. Существование различных режимов движения жидкостей впервые было подтверждено в 1883 г. опытами О. Рейнольдса. Эти опыты показали, что существуют два режима движения жидкостей ламинарное и турбулентное течение. о чем уже говорилось в параграфе 1.4. Ниже рассматриваются особенности этих режимов и способы определения потерь напора в трубопроводах при различных режимах движения жидкости в них. [c.52]

 9ensp;9ensp;9ensp;Разрыв между теоретической гидромеханикой и практической гидравликой тормозил развитие науки о движении жидкости. Сближение этих направлений следует отнести к концу XIX — началу XX вв. Существенную роль в этом сыграла теория размерности и подобия, которую применительно к движению жидкостей развил О. Рейнольдс (1842 -1912), доказавший в 1883 г. существование двух режимов движения жидкости — ламинарного и турбулентного. Он в период 1876 — 1883 гг. экспериментально исследовал вопрос [c.1146]

 9ensp;9ensp;9ensp;Для изучения многих яшдкостей. особенно высоковязких, удобными являются вискозиметры, состоящие из двух концентрически расположенных цилиндров с пространством между ними, заполненным исследуемой жидкостью. Один из цилиндров вращается с постоянной угловой скоростью измерению подлежит момент скручивания, необходимый для поддержания этого равномерного вращения. Если движение жидкости ламинарное, то должно иметь место следующее соотношение  [c.32]

 9ensp;9ensp;9ensp;В зависимости от величины критерия Рейнольдса различают три режима движения жидкости — ламинарный (Ке 10 ) и переходный (2220 10 ). [c.182]

 9ensp;9ensp;9ensp;В случае вязкой несжимаемой жидкости и малых зазоров между поршнем и цилиндром, когда движение жидкости ламинарное, и при малой относительной длине поршня ( Смотреть страницы где упоминается термин Движение жидкостей ламинарное. [c.60]  9ensp; [c.139]  9ensp; Основные процессы и аппараты химической технологии Изд.7 (1961) — [ c.35 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) — [ c.34 ]

Ламинарное и турбулентное течение. Режимы течения жидкости

Ламинарное движение

9 способов никогда не терять ключи, бумажник и телефон Когда вы спешите, то не хотите тратить ни минуты на поиск своих вещей. Вот несколько советов, как перестать тратить время на поиск потерянных предмето.

Ламинарное движение

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Ламинарное движение

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Ламинарное движение

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Ламинарное движение

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Ламинарное движение

7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.

4.4 Ламинарное и турбулентное течения жидкости

Существуют две различные формы, два режима течения жидкостей: ламинарное и турбулентное течения. Течение называется ламинарным (слоистым), если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними, и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости (газа).

Ламинарное течение жидкости наблюдается при небольших скоростях ее движения. При ламинарном течении траектории всех частиц параллельны и формой своей повторяют границы потока. В круглой трубе, например, жидкость движется цилиндрическими слоями, образующие которых параллельны стенкам и оси трубы. В прямоугольном, бесконечной ширины канале жидкость движется как бы слоями, параллельными его дну. В каждой точке потока скорость остается по направлению постоянной. Если скорость при этом не меняется со временем и по величине, движение называется установившимся. Для ламинарного движения в трубе эпюра распределения скорости в поперечном сечении имеет вид параболы с максимальной скоростью на оси трубы и с нулевым значением у стенок, где образуется прилипший слой жидкости. Внешний слой жидкости, примыкающий к поверхности трубы, в которой она течет, из-за сил молекулярного сцепления прилипает к ней и остается неподвижным. Скорости последующих слоев тем больше, чем больше их расстояние до поверхности трубы, и наибольшей скоростью обладает слой, движущийся вдоль оси трубы. Профиль усредненной скорости турбулентного течения в трубах (рис. 53) отличается от параболического профиля соответствующего ламинарного течения более быстрым возрастанием скорости υ.

Ламинарное движение

Рисунок 9Профили (эпюры) ламинарного и турбулентного течений жидкости в трубах

Среднее значение скорости в поперечном сечении круглой трубы при установившемся ламинарном течении определяется законом Гагена — Пуазейля:

где р1 и р2 — давление в двух поперечных сечениях трубы, отстоящих друг от друга на расстоянии Δх; r — радиус трубы; η — коэффициент вязкости.

Закон Гагена — Пуазейля легко может быть проверен. При этом оказывается, что для обычных жидкостей он справедлив лишь при малых скоростях течения или малых размерах труб. Точнее сказать, закон Гагена—Пуазейля выполняется лишь при малых значениях числа Рейнольдса:

где υ — средняя скорость в поперечном сечении трубы; l — характерный размер, в данном случае — диаметр трубы; ν — коэффициент кинематической вязкости.

Английский ученый Осборн Рейнольдс (1842 — 1912) в 1883 г. произвел опыт по следующей схеме: у входа в трубу, по которой течет установившийся поток жидкости, помещалась тонкая трубка так, чтобы ее отверстие находилось на оси трубки. Через трубочку в поток жидкости подавалась краска. Пока существовало ламинарное течение, краска двигалась примерно вдоль оси трубы в виде тонкой, резко ограниченной полоски. Затем, начиная с некоторого значения скорости, которое Рейнольдс назвал критическим, на полоске возникли волнообразные возмущения и отдельные быстро затухающие вихри. По мере роста скорости число их становилось больше, и они начинали развиваться. При некотором значении скорости полоска распадалась на отдельные вихри, которые распространялись на всю толщину потока жидкости, вызывая интенсивное перемешивание и окрашивание всей жидкости. Такое течение было названо турбулентным .

Начиная с критического значения скорости, нарушался и закон Гагена — Пуазейля. Повторяя опыты с трубами разного диаметра, с разными жидкостями, Рейнольдс обнаружил, что критическая скорость, при которой нарушается параллельность векторов скоростей течения, менялась в зависимости от размеров потока и вязкости жидкости, но всегда таким образом, что безразмерное число Ламинарное движениепринимало в области перехода от ламинарного течения к турбулентному определенное постоянное значение.

Английский ученый О. Рейнольдс (1842 — 1912) доказал, что характер течения зависит от безразмерной величины, называемой числом Рейнольдса:

где ν = η/ρ — кинематическая вязкость, ρ — плотность жидкости, υср — средняя по сечению трубы скорость жидкости, l — характерный линейный размер, например диаметр трубы.

Таким образом, до некоторого значения числа Re существует устойчивое ламинарное течение, а затем в некоторой области значений этого числа ламинарное течение перестает быть устойчивым и в потоке возникают отдельные, более или менее быстро затухающие возмущения. Эти значения числа Рейнольдс назвал критическими Reкр. При дальнейшем увеличении значения числа Рейнольдса движение становится турбулентным. Область критических значений Re лежит обычно между 1500—2500. Надо отметить, что на значение Reкр оказывает влияние характер входа в трубу и степень шероховатости ее стенок. При очень гладких стенках и особо плавном входе в трубу критическое значение числа Рейнольдса удавалось поднять до 20 000, а если вход в трубу имеет острые края, заусеницы и т. д. или стенки трубы шероховатые, значение Reкр может упасть до 800—1000.

При турбулентном течении частицы жидкости приобретают составляющие скоростей, перпендикулярные течению, поэтому они могут переходить из одного слоя в другой. Скорость частиц жидкости быстро возрастает по мере удаления от поверхности трубы, затем изменяется довольно незначительно. Так как частицы жидкости переходят из одного слоя в другой, то их скорости в различных слоях мало отличаются. Из-за большого градиента скоростей у поверхности трубы обычно происходит образование вихрей.

Турбулентное течение жидкостей наиболее распространено в природе и технике. Течение воздуха в. атмосфере, воды в морях и реках, в каналах, в трубах всегда турбулентно. В природе ламинарное движение встречается при фильтрации воды в тонких порах мелкозернистых грунтов.

Изучение турбулентного течения и построение его теории чрезвычайно осложнено. Экспериментальные и математические трудности этих исследований до сих пор преодолены лишь частично. Поэтому ряд практически важных задач (течение воды в каналах и реках, движение самолета заданного профиля в воздухе и др.) приходится либо решать приблизительно, либо испытанием соответствующих моделей в специальных гидродинамических трубах. Для перехода от результатов, полученных на модели, к явлению в натуре служит так называемая теория подобия. Число Рейнольдса является одним из основных критериев подобия течения вязкой жидкости. Поэтому определение его практически весьма важно. В данной работе наблюдается переход от ламинарного течения к турбулентному и определяется несколько значений числа Рейнольдса: в области ламинарного течения, в переходной области (критическое течение) и при турбулентном течении.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *