Константа равновесия химической реакции

Константа химического равновесия

Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:

аA + вB D сC + d D,

где A и B – исходные вещества прямой реакции; C и D – продукты прямой реакции; а, в, с, и d – стехиометрические коэффициенты.

В начальный момент времени, когда концентрация веществ A и B наибольшая, скорость прямой реакции также будет наибольшей и по закону действующих масс равна

где k1 – константа скорости прямой реакции.

С течением времени концентрация веществ A и B уменьшается, а, следовательно, уменьшается и скорость прямой реакции.

В начальный момент времени концентрация веществ C и D равна нулю, а, следовательно, и скорость обратной реакции равна нулю, с течением времени концентрация веществ C и D возрастает, а, следовательно, возрастает и скорость обратной реакции и она будет равна

где k2 – константа скорости обратной реакции.

В момент достижения равновесия, концентрации принимают значение равновесных, а скорости равны между собой uпр = uобр. следовательно

Перенесем константы скорости в одну сторону, а концентрации в другую:

Отношение двух постоянных величин есть величина постоянная, и называется она константой химического равновесия:

Константа равновесия показывает во сколько раз скорость прямой реакции больше или меньше скорости обратной реакции.

Константа равновесия – это отношение произведения равновесных концентраций продуктов реакции, взятых в степени их стехиометрических коэффициентов к произведению равновесных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов.

Величина константы равновесия зависит от природы реагирующих веществ и температуры, и не зависит от концентрации в момент равновесия, поскольку их отношение – всегда величина постоянная, численно равная константе равновесия. Если гомогенная реакция идет между веществами в растворе, то константа равновесия обозначается KС. а если между газами, то KР .

где РС. РD. РА и РВ – равновесные давления участников реакции.

Используя уравнение Клапейрона-Менделеева . можно определить связь между KР и KС

Перенесем объем в правую сторону

р = RT, т. е. р = CRT (6.9)

Подставим уравнение (6.9) в (6.7), для каждого реагента и упростим

где Dn – изменение числа молей газообразных участников реакции

Dn = (с + d ) – (а + в) (6.11)

Из уравнения (6.12) видно, что KР = КС. если не меняется количество молей газообразных участников реакции (Dn = 0) или газы в системе отсутствуют.

Необходимо отметить, что в случае гетерогенного процесса концентрацию твердой или жидкой фазы в системе не учитывают.

Например, константа равновесия для реакции вида 2А + 3В = С + 4D, при условии, что все вещества газы и имеет вид

а если D – твердое, то

Константа равновесия имеет большое теоретическое и практическое значение. Численное значение константы равновесия позволяет судить о практической возможности и глубине протекания химической реакции.

Если K > 1, то данная реакция протекает со значительным выходом продуктов реакции; если K > 10 4. то реакция необратима; если K < 1, то такая реакция нетехнологична; если K < 10 -4. то такая реакция невозможна.

Зная константу равновесия, можно определить состав реакционной смеси в момент равновесия и рассчитать константу выхода продуктов реакции. Константу равновесия можно определить, используя экспериментальные методы, анализируя количественный состав реакционной смеси в момент равновесия, или применяя теоретические расчеты. Для многих реакций при стандартных условиях константа равновесия – это табличная величина.

6.3. Факторы, влияющие на химическое равновесие. Принцип Ле-Шателье

При внешнем воздействии на систему происходит смещение химического равновесия, т. е. изменяются равновесные концентрации исходных веществ и продуктов реакции. Если в результате внешнего воздействия увеличиваются равновесные концентрации продуктов реакции, то говорят о смещении равновесия вправо (в сторону прямой реакции). Если вследствие внешнего воздействия увеличиваются равновесные концентрации исходных веществ, то говорят о смещении равновесия влево (в сторону обратной реакции).

Влияние различных факторов на смещение химического равновесия отражает принцип Ле-Шателье (1884): если на систему, находящуюся в устойчивом химическом равновесии воздействовать извне, изменяя температуру, давление или концентрацию, то химическое равновесие смещается в том направлении, при котором эффект произведенного воздействия уменьшается.

Необходимо отметить, что катализатор не смещает химическое равновесие, а только ускоряет его наступление.

Рассмотрим влияние каждого фактора на смещение химического равновесия для реакции общего вида:

аA + вB = сC + d D ± Q.

Влияние изменения концентрации. Согласно принципу Ле-Шателье, увеличение концентрации одного из компонентов равновесной химической реакции приводит к сдвигу равновесия в сторону усиления той реакции, при которой происходит химическая переработка этого компонента. И наоборот, уменьшение концентрации одного из компонентов приводит к сдвигу равновесия в сторону образования этого компонента.

Таким образом, увеличение концентрации вещества А или В смещает равновесие в прямом направлении; увеличение концентрации вещества С или D смещает равновесие в обратном направлении; уменьшение концентрации А или В смещает равновесие в обратном направлении; уменьшение концентрации вещества С или D смещает равновесие в прямом направлении. (Схематично можно записать: ­CА или CВ ®; ­CС или CD ¬; ¯ CА или CВ ¬; ¯ CС или CD ®).

Влияние температуры. Общее правило, определяющее влияние температуры на равновесие, имеет следующую формулировку: повышение температуры способствует сдвигу равновесия в сторону эндотермической реакции (- Q); понижение температуры способствует сдвигу равновесия в сторону экзотермической реакции (+ Q).

Реакции, протекающие без тепловых эффектов, не смещают химического равновесия при изменении температуры. Повышение температуры в этом случае приводит лишь к более быстрому установлению равновесия, которое было бы достигнуто в данной системе и без нагревания, но за более длительное время.

Таким образом, в экзотермической реакции (+ Q) увеличение температуры приводит к сдвигу равновесия в обратном направлении и, наоборот, в эндотермической реакции (- Q) увеличение температуры приводит к сдвигу в прямом направлении, а уменьшение температуры – в обратном направлении. (Схематично можно записать: при +Q ­Т ¬; ¯Т ®; при -Q ­Т ®; ¯Т ¬).

Влияние давления. Как показывает опыт, давление оказывает заметное влияние на смещение только тех равновесных реакций, в которых участвуют газообразные вещества, и при этом изменение числа молей газообразных участников реакции (Dn) не равно нулю. При увеличении давления равновесие смещается в сторону той реакции, которая сопровождается образованием меньшего количества молей газообразных веществ, а при понижении давления – в сторону образования большего количества молей газообразных веществ.

Таким образом, если Dn = 0, то давление не влияет на смещение химического равновесия; если Dn < 0, то увеличение давления смещает равновесие в прямом направлении, уменьшение давления в сторону обратной реакции; если Dn > 0, то увеличение давления смещает равновесие в обратном направлении, а уменьшение давления – в сторону прямой реакции. (Схематично можно записать: при Dn = 0 Р не влияет; при Dn 0 ­Р ¬, ¯Р ®). Принцип Ле-Шателье применим как к гомогенным, так и к гетерогенным системам и дает качественную характеристику сдвига равновесия.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

Константа равновесия химической реакции
Главная | О нас | Обратная связь

Общие представления о химическом равновесии. Константа химического равновесия

Химические реакции, в результате которых хотя бы одно из исходных веществ расходуется полностью, называются необратимыми, протекающими до конца.

Однако большинство реакций являются обратимыми, т.е. идущими в двух противоположных направлениях (прямом и обратном). Особенность таких реакций: они не протекают до конца, в системе всегда остается каждое из исходных веществ. Примеры:

2NO + Cl2 Û 2NOCl;

Все обратимые реакции идут до состояния равновесия. Реакция, протекающая в правую сторону (&#85&4;) – прямая реакция, а в левую сторону () – обратная реакция. Кинетические кривые для прямой (1) и обратной (2) реакции представлены на рис. 7.1.

Со временем скорость прямой реакции, V ®. уменьшается, а скорость обратной, V. возрастает. В некоторый момент времени V ® становится равной V. наступает химическое равновесие (частный случай термодинамического равновесия).

Химическим равновесием называют такое состояние реагирующей системы, при котором скорость прямой реакции V ® равна скорости обратной реакции V . Равенство V ® = V является кинетическим условием химического равновесия.

Химическое равновесие характеризуется постоянством величины энергии Гиббса системы GP,T. Равенство D GP,T = 0 является термодинамическим условием химического равновесия.

Концентрации исходных веществ и продуктов реакции (реагирующих веществ), которые устанавливаются при химическом равновесии, называют равновесными. Обычно их обозначают при помощи квадратных скобок, например, [NO], [Cl2 ], [NOCl], в отличие от неравновесных концентраций, СNO, ССl2. СNOCl .

Химическое равновесие является динамическим или подвижным. Это означает, что в системе, находящейся в состоянии химического равновесия, с равной скоростью идут прямой и обратный процессы, поэтому в системе видимых изменений не наблюдается, т.е. макроскопические параметры, в том числе концентрации веществ, остаются постоянными.

Допустим, что в гомогенной системе протекает обратимая химическая реакция:

аА + bВ Û сС +dD. (1)

В соответствии с законом действия масс:

V ® = k ® · [А] a · [В] b. (2)

V = k · [С] c · [D] d. (3)

В состоянии химического равновесия V ® = V или

k ® · [А] a · [В] b = k · [С] c · [D] d. (4)

где К – константа равновесия химической реакции.

Закон действия масс для обратимых химических процессов формулируется следующим образом: отношение произведения молярных концентраций продуктов реакции к произведению молярных концентраций исходных веществ, взятых в степени их стехиометрических коэффициентов, при данной температуре равно постоянной величине, называемой константой химического равновесия.

Константа равновесия. как следует из выражения (5), равна отношению констант скоростей прямой и обратной реакций. Она показывает, во сколько раз скорость прямой реакции больше скорости обратной реакции, если концентрации каждого из реагирующих веществ равны 1 моль/л. В этом заключается физический смысл константы химического равновесия K.

Константа равновесия зависит от температуры протекания процесса (поскольку k ® и k зависят от температуры) и природы реагирующих веществ, но не зависит от их концентрации и наличия катализатора.

Например, для гомогенной химической реакции синтеза и разложения йодоводорода:

выражение для константы химического равновесия будет иметь вид

Если в гетерогенной системе протекает обратимая химическая реакция, то к ней также применим закон действующих масс, но в выражение для константы химического равновесия не входят концентрации реагирующих веществ, находящихся в конденсированном состоянии (твердом или жидком), т.к. их концентрации остаются, как правило, постоянными и входят в значение соответствующих констант скоростей химической реакции. Например, для гетерогенной реакции (термического разложения) карбоната кальция:

выражение для константы химического равновесия будет иметь вид К = [СО2 ].

Константа химического равновесия связана с изменением энергии Гиббса химической реакции (изобарно-изотермическим потенциалом) &#&16;G уравнением

&#&16;G = — RT lnK или К = ехр (6)

где R – универсальная газовая постоянная (8,31 Дж/(моль&#872&;К)); Т – абсолютная температура, К; К – константа равновесия.

При стандартных условиях (Т = 298 К): &#&16;G 0 298 (кДж) = — 5,71 · lgK298 .

Приведенное уравнение позволяет по величине &#&16;G вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если:

· K > 1, то &#&16;G < 0, в равновесной смеси преобладают продукты взаимодействия, равновесие смещено вправо (протекает прямая реакция);

· K < 1, то &#&16;G > 0, в равновесной смеси преобладают исходные вещества, равновесие смещено влево (обратная реакция);

· K = 1, то &#&16;G = 0, скорости прямой и обратной реакций равны между собой, состояние химического равновесия.

Константа — химическое равновесие

Константа химического равновесия характеризует сдвиг равновесия обратимой реакции в ту или иную сторону. Константа равновесия для каждой химической реакции определяется экспериментальным путем.  [1]

Константа химического равновесия зависит от природы реагентов и от температуры и не зависит от давления ( при не очень высоких давлениях) и от концентраций реагентов и продуктов реакции, от наличия или отсутствия примесей.  [2]

Константа химического равновесия равна отношению произведения равновесных концентраций полученных веществ реакции к произведению равновесных концентраций исходных веществ этой реакции, причем значение каждой концентрации возводится в степень, равную стехиометрическому коэффициенту перед формулой соответствующего вещества в уравнении реакции.  [3]

Константа химического равновесия характеризует сдвиг s — равновесия обратимой реакции в ту или иную сторону. Константа равновесия для каждой химической реакции определяется экспериментальным путем.  [4]

Константа химического равновесия характеризует и различные химические реакции, протекающие между веществами, которые находятся в различных агрегатных состояниях. Следует, однако, обратить внимание на способ выражения концентраций, так как в определенных условиях реакции некоторые из них могут оставаться постоянными.  [5]

Константа химического равновесия / Сс представляет характерную для каждой обратимой реакции величину, которая определяется природой реагирующих веществ и не зависит от их концентрации.  [6]

Константа химического равновесия является характерной для каждой химической реакции величиной. Она, как показывает опыт, не зависит от концентрации реагирующих веществ, но изменяется с температурой.  [7]

Константа химического равновесия зависит от природы реагентов и от температуры и не зависит от давления ( при не очень высоких давлениях) и от концентраций реагентов и продуктов реакции ( в разбавленных растворах), а также от наличия или отсутствия примесей в небольших количествах.  [8]

Константа химического равновесия ( К), равная отношению констант скоростей двух взаимно противоположных реакций, показывает, во сколько раз прямая реакция идет быстрее обратной при данной температуре и произведении концентраций реагирующих веществ, равном единице.  [9]

Константа химического равновесия является характерной для каждой реакции величиной, она не зависит от концентрации реагирующих веществ, но изменяется с температурой.  [10]

Константа химического равновесия является характерной для каждой реакции величиной, она не зависит от концентрации реагирующих веществ, но изменяется с температурой.  [11]

Константа химического равновесия ( К), равная отношению констант скоростей двух взаимно противоположных процессов, количественно характеризует сдвиг равновесия обратимой реакции в ту или иную сторону. Если Я1, торавновесие сдвинуто вправо, и наоборот, еслиЛ1 — влево.  [12]

Константа химического равновесия зависит от температуры.  [13]

Константа химического равновесия К зависит от природы веществ, температуры и давления.  [14]

Константа химического равновесия определяется природой реагирующих веществ и не зависит от их концентрации. Состояние химического равновесия зависит от концентрации реагирующих веществ, температуры и давления, если в реакциях участвуют газы. Тогда снова устанавливается равновесие, но уже при других, чем ранее, концентрациях. Процесс изменения концентраций, вызванный нарушением равновесия, называется смещением, или сдвигом равновесия. Если при этом увеличивается концентрация образующихся веществ, то говорят, что равновесие смещается вправо, если же увеличивается концентрация исходных веществ, то говорят, что равновесие сдвигается влево.  [15]

Страницы:    9ensp;9ensp;1  9ensp;9ensp;2  9ensp;9ensp;3  9ensp;9ensp;4

Поделиться ссылкой:

Константа равновесия

Термодинамическим равновесием называется такое термодинамическое состояние системы, которое при постоянстве внешних условий не изменяется во времени, причем эта неизменяемость не обусловлена каким-либо внешним процессом.

Условием термодинамического равновесия в закрытой системе является минимальное значение соответствующего термодинамического потенциала:

Изобарно-изотермического (P=const, T=const):

∆G=0, dG=0, d 2 G>0;

Изохорно-изотермического (V=const, T=const):

∆F=0, dF=0, d 2 F>0.

Учение о равновесных состояниях- один из разделов термодинамики.

Количественной характеристикой химического равновесия является константа равновесия К, которая может быть выражена через равновесные концентрации С или парциальные давления Р реагирующих веществ. Для некоторой реакции:

соответствующие константы равновесия выражаются следующим образом:

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры.

Кроме того, константа равновесия есть отношение констант скоростей прямой и обратной реакций. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратимой реакции при данной температуре и концентрациях всех реагирующих веществ, равных 1моль/л.

Константа равновесия и энергия изменения Гиббса.

Для реакции, протекающей в изобарно-изотермических условиях, в некотором неравновесном исходном состоянии энергии Гиббса или химические потенциалы реагирующих веществ и продуктов реакции в общем случае не одинаковы, их разность (ΔGT ) может быть рассчитана по уравнению:

Константа равновесия химической реакции

где Константа равновесия химической реакции — отношение парциальных давлений участников реакции в исходном состоянии в степенях, равных их стехиометрическим коэффициентам; R — универсальная газовая постоянная.

Это уравнение называют уравнением изотермы химической реакции. Оно позволяет рассчитать изменение энергии Гиббса при протекании процесса и определить направление протекания реакции:

при Константа равновесия химической реакцииКонстанта равновесия химической реакции— реакция идёт в прямом направлении, слева направо;

при Константа равновесия химической реакцииКонстанта равновесия химической реакции— реакция достигла равновесного состояния;

при Константа равновесия химической реакцииКонстанта равновесия химической реакции— реакция идёт в обратном направлении.

Стандартная константа равновесия связана со стандартной энергией Гиббса реакции соотношением:

Константа равновесия химической реакции

Стандартная энергия Гиббса реакции в газовой смеси — энергия Гиббса реакции при стандартных парциальных давлениях всех компонентов, равных 0,1013 МПа (1 атм).

Стандартная энергия Гиббса реакции в растворе — энергия Гиббса при стандартном состоянии раствора, за которое принимают гипотетический раствор со свойствами предельно разбавленного раствора, но с концентрацией всех реагентов, равной единице. Величина стандартной энергии Гиббса реакции может быть использована для приближенной оценки термодинамической возможности протекания реакции в данном направлении, если начальные условия не сильно отличаются от стандартных. Кроме того, сравнивая величины стандартной энергии Гиббса нескольких реакций, можно выбрать наиболее предпочтительные, для которых Константа равновесия химической реакцииимеет наибольшую по модулю отрицательную величину.

Зависимость константы равновесия от температуры.

Зависимость константы равновесия реакции от температуры может быть описана уравнением изобары химической реакции (изобары Вант-Гоффа):

Константа равновесия химической реакции

и изохоры химической реакции (изохоры Вант-Гоффа):

Константа равновесия химической реакции

Здесь Константа равновесия химической реакциии Константа равновесия химической реакции — тепловой эффект реакции, протекающей, соответственно, при постоянном давлении или при постоянном объёме. Если Константа равновесия химической реакции(тепловой эффект положителен, реакция эндотермическая), то температурный коэффициент константы равновесия Константа равновесия химической реакциитоже положителен, то есть с ростом температуры константа равновесия эндотермической реакции увеличивается, равновесие сдвигается вправо (что вполне согласуется с принципом Ле Шателье).

Методы расчета константы равновесия.

Расчётные методы определения константы равновесия реакции обычно сводятся к вычислению тем или иным способом стандартного изменения энергии Гиббса в ходе реакции (ΔG0 ), а затем использованию формулы:

Константа равновесия химической реакции, где Константа равновесия химической реакции — универсальная газовая постоянная.

При этом следует помнить, что энергия Гиббса — функция состояния системы, то есть она не зависит от пути процесса, от механизма реакции, а определяется лишь начальным и конечным состояниями системы. Следовательно, если непосредственное определение или расчёт ΔG0 для некоторой реакции по каким-либо причинам затруднены, можно подобрать такие промежуточные реакции, для которых ΔG0 известно или может быть легко определено, и суммирование которых даст рассматриваемую реакцию (см. Закон Гесса). В частности, в качестве таких промежуточных реакций часто используют реакции образования соединений из элементов.

Константа химического равновесия

Количественной характеристикой химического равновесия является константа равновесия . которая может быть выражена через равновесные концентрации Сi. парциальные давления Pi или мольные доли Xi реагирующих веществ. Для некоторой реакции

соответствующие константы равновесия выражаются следующим образом:

Константа равновесия есть характерная величина для каждой обратимой химической реакции; величина константы равновесия зависит только от природы реагирующих веществ и температуры. На основании уравнения состояния идеального газа, записанного в виде соотношения Pi = Ci RT, где Сi = ni /V, и закона Дальтона для идеальной газовой смеси, выраженного уравнением P = &#&31;Pi. можно вывести соотношения между парциальным давлением Pi. молярной концентрацией Сi и мольной долей Xi i-го компонента:

Отсюда получаем соотношение между Kc. Kp и Kx :

Здесь &#&16;ν – изменение числа молей газообразных веществ в течение реакции:

Величина константы равновесия Kx. в отличие от констант равновесия Kc и Kp. зависит от общего давления Р.

Выражение для константы равновесия элементарной обратимой реакции может быть выведено из кинетических представлений. Рассмотрим процесс установления равновесия в системе, в которой в начальный момент времени присутствуют только исходные вещества. Скорость прямой реакции V1 в этот момент максимальна, а скорость обратной V2 равна нулю:

По мере уменьшения концентрации исходных веществ растет концентрация продуктов реакции; соответственно, скорость прямой реакции уменьшается, скорость обратной реакции увеличивается. Очевидно, что через некоторое время скорости прямой и обратной реакции сравняются, после чего концентрации реагирующих веществ перестанут изменяться, т.е. установится химическое равновесие.

Приняв, что V1 = V2. можно записать:

Т.о. константа равновесия есть отношение констант скорости прямой и обратной реакции. Отсюда вытекает физический смысл константы равновесия: она показывает, во сколько раз скорость прямой реакции больше скорости обратной при данной температуре и концентрациях всех реагирующих веществ, равных 1 моль/л. Приведённый вывод выражения для константы равновесия, однако, исходит из ложной в общем случае посылки, что скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам. Как известно, в общем случае показатели степени при концентрациях реагентов в кинетическом уравнении химической реакции не совпадают со стехиометрическими коэффициентами.

11. Окислительно-восстановительные реакции: определение, основные понятия, сущность окисления и восстановления, важнейшие окислители и восстановители реакции.

Окислительно-восстановительными называют процессы, которые, сопровождаются смещением электронов от одних свободных или связанных атомов к другим. Поскольку в таких случаях имеет значение не степень смещения, а только число смещенных электронов, то принято условно считать смещение всегда полным и говорить об отдаче или смещении электронов.

Если атом или ион элемента отдает или принимает электроны, то в первом случае степень окисления элемента повышается, и он переходит в окисленную форму (ОФ), а во втором – понижается, и элемент переходит в восстановленную форму (ВФ). Обе формы составляют сопряженную окислительно-восстановительную пару. В каждой окислительно-восстановительной реакции участвуют две сопряженные пары. Одна из них соответствует переходу окислителя, принимающего электроны, в его восстановленную форму (ОФ1 &#85&4;ВФ1 ), а другая – переходу восстановителя, отдающего электроны, в его окисленную форму (ВФ2 &#85&4;ОФ2 ), например:

(здесь Cl2 – окислитель, I – – восстановитель)

Таким образом, одна и та же реакция всегда является одновременно процессом окисления восстановителя и процессом восстановления окислителя.

Коэффициенты в уравнениях окислительно-восстановительных реакций могут быть найдены методами электронного баланса и электронно-ионного баланса. В первом случае число принятых или отданных электронов определяется по разности степеней окисления элементов в исходном и конечном состояниях. Пример:

В этой реакции степень окисления меняют два элемента: азот и сера. Уравнения электронного баланса:

N 5+ + 3e &#85&4; N 2+

Уравнение реакции в молекулярной форме:

ВАЖНЕЙШИЕ ОКИСЛИТЕЛИ И ВОССТАНОВИТЕЛИ. КЛАССИФИКАЦИЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

Пределы окисления и восстановления элемента выражаются максимальным и минимальным значениями степеней окисления *. В этих крайних состояниях, определяемых положением в таблице Менделеева, элемент имеет возможность проявить только одну функцию – окислителяили восстановителя. Соответственно и вещества, содержащие элементы в этих степенях окисления, являются только окислителями (HNO3. H2 SO4 ,HClO4. KMnO4. K2 Cr2 O7 и др.) или только восстановителями (NH3. H2 S, галогеноводороды, Na2 S2 O3 и др.). Вещества, содержащие элементы в промежуточных степенях окисления, могут быть как окислителями, так и восстановителями (HClO, H2 O2. H2 SO3 и др.).

Окислительно-восстановительные реакции разделяются на три основных типа: межмолекулярные, внутримолекулярные и реакции диспропорционирования.

К первому типу относятся процессы, в которых атомы элемента-окислителя и элемента-восстановителя входят в состав разных молекул.

Внутримолекулярными называются реакции, в которых окислитель и восстановитель в виде атомов разных элементов находятся в составе одной и той же молекулы. Например, термическое разложение хлората калия по уравнению:

Реакциями диспропорционирования называют процессы, в которых окислителем и восстановителем является один и тот же элемент в одной и той же степени окисления, которая в реакции одновременно как снижается, так и повышается, например:

3 HClO &#85&4; HClO3 + 2 HCl

Возможны также реакции обратного диспропорционирования. К ним относятся внутримолекулярные процессы, в которых окислителем и восстановителем является один и тот же элемент, но в виде атомов, находящихся в разной степени окисления и выравнивающих ее в результате реакции, например:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *