Коэффициент трения это

Коэффициент трения

Коэффициент трения — отношение силы трения F к реакции Т, направленной по нормали к поверхности касания, возникающей при приложении нагрузки, прижимающей одно тело к другому: f = F/T.

Коэффициент трения — характеристика, применяемая при выполнении технических расчётов, характеризующих фрикционное взаимодействие двух тел. В зависимости от вида перемещения одного тела по другому различают: коэффициент трения при сдвиге — скольжении и коэффициент трения при качении. В свою очередь, при скольжении в зависимости от величины тангенциальной силы различают коэффициент неполного трения скольжения, коэффициент трения покоя и коэффициент трения скольжения. Все эти коэффициенты трения могут изменяться в широких пределах в зависимости от шероховатости и волнистости поверхностей, характера плёнок, покрывающих поверхности. Для протяжённого контакта они мало изменяются с изменением нагрузки. В зависимости от величины коэффициент трения скольжения пары трения делят на 2 группы: фрикционные материалы, имеющие большой коэффициент трения— обычно 0,3—0,35, редко 0,5—0,6, и антифрикционные, имеющие коэффициент трения без смазки 0,15—0,12, при граничной смазке 0,1—0,05. Сопротивление свободному качению твёрдого тела (например, колеса) характеризуют коэффициентом сопротивления перекатыванию fk = T•rd/Ik [см], где Т — нормальная составляющая реакции колеса на опору; rd — динамический радиус качения; Ik — нормальная нагрузка на колесе. Если на колесо действуют ведущий или тормозной моменты, то коэффициент сцепления y колеса с дорожным покрытием определяется равенством: y = Tx/Ik, где Tx — неполная сила трения скольжения, возникающая между катящимся колесом и дорогой. Коэффициенты fk и y существенно зависят от природы трущихся тел, характера покрывающих их плёнок и скорости качения. Обычно для металлов (сталь по стали) fk = 0,001—0,002 см. При движении автомобиля со скоростью 80 км/час коэффициент трения колёс по асфальту fk = 0,02 см и резко возрастает с увеличением скорости. Коэффициент сцепления y на сухом асфальте доходит у автомобильных колёс до 0,8, а при наличии плёнки воды снижается до 0,2—0,1.

Коэффициент трения зависит от рода грунта и скорости относительного перемещения трущихся поверхностей. Коэффициент трения покоя (табл. 8.1) несколько больше коэффициента трения в момент получения движения судном при снятии с мели. Таблица 8.1 Величины коэффициента трения покоя для различных грунтов Характер грунта Коэффициент Жидкая глина (ил) Глина Глина с песком Мелкий песок Крупный песок Галька Каменная плита Булыжник 0,20—0,30 0,30—0,45 0,30—0,40 0,40—0,45 0,40—0,50 0,45—0,50 0,35—0,50 0,40—0,60 При посадке на мель, как правило, корпус судна проседает в грунте. Грунт начинает оказывать давление на борта судна. Это давление является причиной дополнительного сопротивления стаскиванию судна с мели. Величина проседания зависит от рода грунта, силы давления корпуса, времени нахождения на мели. При проседании судна частицы грунта прилипают к корпусу, создавая эффект присасывания. Сила присасывания тем больше, чем большей вязкостью обладает грунт. Наибольшее присасывание наблюдается у вязкой глины. На каменистых грунтах корпус может получить пробоины, в которые проникают камни и даже скалы. Это также препятствует снятию судна с мели. Характер сил, действующих на судно, находящееся на мели, разнообразен, но учет их возможен. Однако для этого требуются громоздкие расчеты, основанные на всестороннем и тщательном обследовании состояния судна, что само по себе является трудоемким процессом. В практике пользуются упрощенными расчетами по формуле (8.1) и принимают во внимание особенности действия сил. Этого достаточно, чтобы принять принципиальное решение о возможности снятия судна с мели собственными средствами и оценить характер и объем аварийных работ

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

60. Виды трения. Коэффициент трения

Общее сопротивление, возникающее в местах соприкоснове- ния двух тел, которые перемещаются друг относительно друга, называется силой трения. Сопротивление движению возникает из-за упругих вязких и пластических деформаций шерохова­тых поверхностей соприкасающихся тел.

Трение в одних случаях является полезным фактором, на- пример: при сцеплении винта и гайки с закрепляемой деталью колес автомобиля или трамвая с дорогой, дисков тормозов различных машин.

В других случаях трение вызывает непроизводительный расход энергии, быстрый износ трущихся деталей. Например, короткий ресурс различных двигателей, редукторов, ряда машин, объясняется быстрым износом контактирующих поверх­ностей звеньев, т. е. кинематических пар.

Уменьшая трение в кинематических парах, можно обеспечить уменьшение расхода энергии и увеличить их долговечность, а следовательно повысить ресурс различных машин.

Трение препятствует относительному движению звеньев в кинематических парах. В зависимости от характера относительного движения различают:

— трение скольжение в низших кинематических парах,

— трение качения или трение качения с трением скольжения в высших кинематических парах.

Трение скольжения, в свою очередь можно разделить на:

— сухое трение (из-за сопротивления микронеровностей контактирующих поверхностей при отсутствии смазки),

— полусухое трение (из-за сопротивления микронеровностей при наличии смазки),

— жидкостное трение (при отсутствии контакта по­верхностей жидким слоем жидкости, за счет вязкости жидкости). Природа сухого и жидкостного трения, а также трения качения — различна, поэтому отличаются и методы определения тех сопротивлений, которые появляются при относительном движении элементов кинематических пар. В технических расчетах для определения силы трения сухих поверхностей пользуются формулой F=f·N, где f — коэффициент трения скольжения при движении, N — нормальная сила.

Коэффициент трения покоя f0 больше коэффициента трения при движении, т.e. f0 >f. Коэффициент f зависит от многих факторов и определяется экспериментально; для основных материалов он приводится в справочниках, Зависимостью пользуются для оценки силы тре­ния в поступательных кинематических парах, представляя её в виде Fmp =fпр ·N,

где fпр — приведенный коэффициент трения, учитывающий коэффициент трения материалов. форму и размеры элементов кинематической пары и характер приложения силы.

74. Зубчатые механизмы

Зубчатые механизмы предназначены для передачи вращательного движения от одного вала к другому. Цилиндрические — передают вращение между параллельными валами. Они получили очень широкое распространение в машиностроения благодаря большой надежности и точности в воспроизведения заданного передаточного отношения. Могут передавать большие нагрузки и достаточно просто изготавливаются. Зуб — это выступ на звене для передачи движения посредством взаимодействия с соответствующим выступом другого звена.

Зубчатое звено – звено, имеющее один или несколько зубьев.

Зубчатое колесо — зубчатое звено с замкнутой системой зубьев, обеспечивающее непрерывное движение другого звена.

Зубчатая передача — трехзвенный механизм; в котором два сдвижных звена являются зубчатыми колесами образующими с неподвижным звеном вращательную или поступательную пару,

Цилиндрические передачи классифицируют:

1. По пространственному расположению — на внешние; внутренние и реечные (рис. 7.1).

2. По форме зуба — на прямо- и косозубые (рис. 7.1). У перв.чх линия зуба параллельна оси колеса», у вторых — расположена под углом.

3. По боковой поверхности — на эвольвентные, зацепление Новикова (боковая поверхность очерчена по дуге окружности) и др.

4. По передаточному отношению.

Передаточное отношение — это отношение угловой скорости ведущего зубчатого колеса к угловой скорости, ведомого зубчатого колеса.U1 = -w1 /w2 — для внешнего зацепления; U1 = w1 /w2 — для внутреннего. Передаточное число — отношение числа зубьев колеса к числу зубьев шестерни. Колесо — зубчатое колесо передачи с большим числом зубьев. Шестерня — колесо с меньшим числом зубьев. Различают передачи с положительным и отрицательным передаточным отношением, с U> 1 (редукторы) и U <1 (мультипликаторы), с U=const и U Коэффициент трения этоconst (некруглые колеса).

коэффициент трения это:

Смотреть что такое «коэффициент трения» в других словарях:

КОЭФФИЦИЕНТ ТРЕНИЯ — КОЭФФИЦИЕНТ ТРЕНИЯ, количественная характеристика силы, необходимой для скольжения или движения одного материала по поверхности другого. Если обозначить вес предмета как N, а коэффициент ТРЕНИЯ m, то сила (F), необходимая для движения предмета по … Научно-технический энциклопедический словарь

коэффициент трения — Отношение силы трения двух тел к нормальной силе, прижимающей эти тела друг к другу. [ГОСТ 27674 88] Тематики трение, изнашивание и смазка EN coefficient of friction … Справочник технического переводчика

коэффициент трения — 3.1 коэффициент трения: Отношение силы трения двух тел к нормальной силе, прижимающей эти тела друг к другу. Источник: СТ ЦКБА 057 2008: Арматура трубопроводная. Коэффициенты трения в узлах арматуры 3.1 коэффициент трения: Отношение силы трения… … Словарь-справочник терминов нормативно-технической документации

Коэффициент трения — Трение процесс взаимодействия твёрдых тел при их относительном движении (смещении) либо при движении твердого тела в жидкой или газообразной среде. По другому называется фрикционным взаимодействием (англ. friction). Изучением процессов трения… … Википедия

Коэффициент трения — Coefficient of friction Коэффициент трения. Безразмерное отношение силы трения (F) между двумя телами к нормальной силе (N) сжимающей эти тела: (или f = F/N). (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО… … Словарь металлургических терминов

коэффициент трения — trinties faktorius statusas T sritis Standartizacija ir metrologija apibrėžtis Trinties jėgos ir statmenai kūno judėjimo arba galimo judėjimo kryčiai veikiančios jėgos dalmuo. atitikmenys: angl. friction coefficient; friction factor; frictional… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

коэффициент трения — trinties faktorius statusas T sritis fizika atitikmenys: angl. friction coefficient; friction factor; frictional factor vok. Reibungsfaktor, m; Reibungskoeffizient, m; Reibungszahl, f rus. коэффициент трения, m pranc. coefficient de friction, m;… … Fizikos terminų žodynas

коэффициент трения — [friction factor] отношение силы трения к силе нормального давления, например, при прокатке, волочении, прессовании и других видах обработки металлов; обозначется f и изменяется в достаточно широких пределах. Так, при прокатке f= 0,03 0,5. В… … Энциклопедический словарь по металлургии

коэффициент трения (металлургия) — коэффициент трения Безразмерное отношение силы трения (F) между двумя телами к нормальной силе (N) сжимающей эти тела: (или f = F/N). [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN foefficient of friction … Справочник технического переводчика

коэффициент трения потока — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN flow friction characteristics … Справочник технического переводчика

  • Мыши компьютерные Logitech. Мышь/Геймерская|Тип подключения/Проводное|Тип сенсора мыши/Лазерный|Цвет/Черный|Разрешение оптического сенсора мыши/200 — 8200 dpi|Количество клавиш/20|Интерфейс подключения/USB|Длина провода… Подробнее Купить за 2799 грн (только Украина)
  • Коврик для мыши Logitech. НИЗКИЙ КОЭФФИЦИЕНТ ТРЕНИЯ ПОВЕРХНОСТИ Устранена инерция Поверхность коврика G440 с крайне низким коэффициентом трения является идеальной для точных и быстрых перемещений мыши. Для… Подробнее Купить за 2709 руб
  • Лента хоккейная es для крюка красная 18 м.* 24 мм 175140. Лента хоккейная ES — это лента для крюка хоккейной клюшки, которая имеет высококачественную клеящую поверхность, что обеспечивает более длительный срок службы. Лента гипоаллергенная, которая… Подробнее Купить за 310 руб

Другие книги по запросу «коэффициент трения» >>

Коэффициент трения при скольжении и качении

February 9, 2013

В земных условиях любые движущиеся тела (или приходящие в движение) соприкасаются с веществом окружающей среды либо с другими телами. При этом возникают силы, оказывающие сопротивление их движению. Силы эти именуются силами трения, они переводят часть механической энергии движения во внутреннюю энергию, что сопровождается нагреванием тел и окружающей среды.

Трение бывает внешним и внутренним. Внутреннее (иначе называемое вязкостью) заключается в возникновении касательной силы между перемещающимися слоями жидкость или газа, мешающей этому перемещению.

В отличие от него, внешнее трение возникает в местах контакта твердых тел в виде силы, касательной к их поверхности и затрудняющей их взаимное перемещение. Оно, в свою очередь, подразделяется на статическое (трение покоя) и кинематическое. Статическое трение проявляется при попытке сдвинуть одно неподвижное тело относительно другого. Кинематическое существует между движущимися телами, соприкасающимися между собой. Внешнее трение можно разделить на трение скольжения и качения.

В чем физический смысл трения? Полезно оно или вредно? На первый взгляд, трение только мешает нам: изнашиваются детали механизмов, шины автомобилей, стираются подошвы ботинок и т. д. И создание вечного двигателя невозможно лишь по этой причине. Но приглядимся повнимательнее. Исчезнет трение – мы не сможем ни шагать, ни листать книгу, ни тронуть с места автомобиль, ни остановить движущийся. Огромное число физических явлений в мире базируется на трении. Два главных достижения человечества, определивших развитие цивилизации – добыча огня и изобретение колеса – были бы без него невозможны.

Основано данное явление на неровности любых тел: при соприкосновении зазубрины одного всегда цепляются за шероховатости другого. Для идеально гладких (например, тщательно отшлифованных) поверхностей, плотно прилегающих друг к другу, действуют законы молекулярного трения, основанного на взаимном притяжении молекул.

Изучает трение наука трибология. В 1781 году французским физиком Ш. Кулоном были сформулированы основные законы сухого трения. Опытным путем ученый установил, что сила трения F, возникающая при скольжении, прямо пропорциональна действующей на тело силе N нормального давления. Эта зависимость выглядит следующим образом:

где величина k – коэффициент трения (коэффициент пропорциональности). Его величина была вычислена так: тело помещалось на наклонную плоскость и путем изменения угла наклона достигалось его равномерное движение. При этом сила трения F равнялась движущей силе P :

Величина силы N (силы нормального давления) равна P ∙ cos a; следовательно k = tg a. Коэффициент трения отсюда является тангенсом угла наклона поверхности, по которой тело скользит равномерно, т. е. с постоянной скоростью.

На практике его значение может быть вычислено лишь приблизительно. Поверхности тел, как правило, в той или иной степени загрязнены, имеют окислы, ржавчину и другие включения. Коэффициент трения, определяемый попарно для сочетаний различных материалов путем экспериментов, вносится в специальные справочные таблицы.

При качении трение возникает оттого, что движущееся колесо слегка вдавливается в дорожную поверхность, т. е. вынуждено преодолевать небольшой бугорок. Чем тверже дорога, тем меньше этот бугорок и меньше сила трения. Ее величина рассчитывается в данном случае формулой: F = k ∙ N / r, в которой r – величина радиуса колеса. Следовательно, коэффициент трения качения обладает размерностью протяженности. Обычно его выражают в сантиметрах в отличие от коэффициента трения скольжения, являющегося безразмерной величиной.

Как упоминалось выше, коэффициент внутреннего трения существует не только для твердых тел, но и для жидкостей. В гидравлике часто требуется рассчитать потери удельной энергии гидравлических систем, возникающие в трубопроводах. Они бывают двух видов: потери по длине, возникающие в прямых трубах при равномерном течении, и местные потери, причина которых – деформация потока из-за изменения формы канала (сужение, расширение, повороты). Гидравлические потери рассчитывают с помощью аналогичной величины, которая называется «коэффициент гидравлического трения».

Коэффициент трения это

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Коэффициент трения это

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Коэффициент трения это

7 вещей, которые следует мыть и стирать каждый день Это может показаться еще одним пунктом в бесконечном списке ежедневных дел, но за этим кроется эффективный метод, который позволяет создать положитель.

Коэффициент трения это

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Коэффициент трения это

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Коэффициент трения это

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Коэффициент трения

Определение и формула коэффициента трения

Коэффициент трения — это основная характеристика трения как явления. Он определяется видом и состоянием поверхностей трущихся тел.

Коэффициентом трения называют коэффициент пропорциональности, связывающий силу трения (Коэффициент трения это) и силу нормального давления (N) тела на опору. Чаще всего коэффициент трения обозначают буквой Коэффициент трения это. И так, коэффициент трения входит в закон Кулона — Амонтона:

Коэффициент трения это

Данный коэффициент трения не зависит от площадей, соприкасающихся поверхностей.

В данном случае речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Коэффициент трения, который соответствует максимальной силе трения покоя в большинстве случаев больше, чем коэффициент трения движения.

Для большего числа пар материалов величина коэффициента трения не больше единицы и лежит в пределах Коэффициент трения это

Угол трения

Иногда вместо коэффициента трения применяют угол трения (Коэффициент трения это), который связан с коэффициентом соотношением:

Коэффициент трения это

Так, угол трения Коэффициент трения это соответствует минимальному углу наклона плоскости по отношению к горизонту, при котором тело, лежащее на этой плоскости, начнет скользить вниз под воздействием силы тяжести. При этом выполняется равенство:

Коэффициент трения это

Истинный коэффициент трения

Закон трения, который учитывает влияние сил притяжения между молекулами, трущихся поверхностей записываю следующим образом:

Коэффициент трения это

где Коэффициент трения это — называют истинным коэффициентом трения, Коэффициент трения это — добавочное давление, которое вызывается силами межмолекулярного притяжения, S — общая площадь непосредственного контакта трущихся тел.

Коэффициент трения качения

Коэффициент трения качения (k) можно определить как отношение момента силы трения качения (Коэффициент трения это) к силе с которой тело прижимается к опоре (N):

Коэффициент трения это

Отметим, что коэффициент трения качения обозначают чаще буквой Коэффициент трения это. Этот коэффициент, в отличие от выше перечисленных коэффициентов трения, имеет размерность длины. То есть в системе СИ он измеряется в метрах.

Коэффициент трения качения много меньше, чем коэффициент трения скольжения.

Примеры решения задач

Веревка лежит частично на столе, часть ее свешивается со стола. Если треть длины веревки свесится со стола, то она начинает скользить. Каков коэффициент трения веревки о стол?

Веревка скользит со стола под действием силы тяжести. Обозначим силу тяжести, которая действует на единицу длины веревки как Коэффициент трения это. В таком случае в момент начала скольжения сила тяжести, которая действует на свешивающуюся часть веревки, равна:

Коэффициент трения это

До начала скольжения эта сила уравновешивается силой трения, которая действует на часть веревки, которая лежит на столе:

Коэффициент трения это

Так как силы уравновешиваются, то можно записать (Коэффициент трения это):

Коэффициент трения это

Коэффициент трения это

Каков коэффициент трения тела о плоскость (Коэффициент трения это), если зависимость пути, которое оно проходит задано уравнением: Коэффициент трения это где Коэффициент трения это Плоскость составляет угол Коэффициент трения это с горизонтом.

Запишем второй закон Ньютона для сил, приложенных к движущемуся телу:

Коэффициент трения это

Запишем проекции уравнения (2.1) на оси X и Y:

Коэффициент трения это

Коэффициент трения это

Коэффициент трения это

Коэффициент трения это

Ускорение, с которым движется тело, найдем из уравнения Коэффициент трения это:

Коэффициент трения это

Подставим (2.5), (2.4) в уравнение (2.2), получим:

Коэффициент трения это

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *