Электромагнитный прибор

ЭЛЕКТРОМАГНИТНЫЕ ПРИБОРЫ

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля, создаваемого током в неподвижной катушке, с подвижным ферромагнитным сердечником. Одна из наиболее распространенных конструкций электромагнитного измерительного механизма представлена на рис. 2.23, где1— катушка; 2 —сердечник, укрепленный на оси прибора; 3—спиральная пружина, создающая противодействующий момент; 4— воздушный успокоитель. (Встречаются также другие конструктивные модификации измерительных механизмов этой системы.) Под действием магнитного поля сердечник втягивается внутрь катушки. Подвижная часть механизма поворачивается до тех пор, пока вращающий момент не уравновесится противодействующим моментом, создаваемым пружиной.

Уравнение преобразования. Энергия магнитного поля катушки, через которую протекает ток I,

Электромагнитный прибор где L —индуктивность катушки, зависящая от положения сердечника, а следовательно, и от угла поворота подвижной части.

Согласно (2.2) вращающий момент

При установившемся отклонении подвижной части механизма Мврпр, где Мпр=Wa , т.е. уравнение преобразования прибора имеет вид

Если по катушке протекает переменный ток i(t). то необходимо произвести усреднение по времени:

По определению действующее значение тока

Из (2.65) следует, что угол поворота подвижной части механизма пропорционален квадрату действующего значения тока, т.е. не зависит от направления тока. Поэтому электромагнитные приборы одинаково пригодны для измерений в цепях постоянного и переменного тока. Линеаризация шкалы производится при помощи выбора специальной формы сердечника.

Электромагнитный приборАмперметры. Промышленностью выпускаются амперметры с номинальным током от долей ампера до 200А. Наиболее распространены амперметры на 5А, Последнее обстоятельство связано с тем, что на практике для расширения пределов измерения используются трансформаторы тока, причем номинальное значение тока во вторичной обмотке выбирается, как правило, равным 5А, На рис. 2.24 показано включение амперметра во вторичную обмотку трансформатора тока. Здесь w1,— первичная обмотка; w2 —вторичная; I1 и I2 соответствующие токи.

Вольтметры. Если учесть, что ток через катушку прибора I=U/Rи, где U— приложенное напряжение, а Rи —сопротивление катушки, то из (2.65) следует

Таким образом, шкала измерительного механизма может быть проградуирована и в единицах напряжения. Для расширения пределов измерения вольтметров используются добавочные сопротивления, поэтому приборы можно выполнять многопредельными. Промышленностью выпускаются электромагнитные вольтметры с номинальным напряжением от долей вольта до сотен вольт.

К достоинствам приборов электромагнитной системы относятся: простота конструкции, низкая стоимость, надежность, способность выдерживать большие перегрузки, пригодность для измерения в цепях как постоянного, так и переменного тока.

Недостатками являются: большое собственное потребление энергии, малая точность, малая чувствительность, сильное влияние внешних магнитных полей.

Приборы электромагнитной системы применяются в основном в качестве щитовых амперметров и вольтметров переменного тока промышленной частоты, Класс точности этих приборов 1,5 и 2,5. В некоторых особых случаях они используются для работы на повышенных частотах: амперметры до 8000Гц, вольтметры до 400Гц. Используются они и в лабораторной практике как переносные приборы классов точности 0,5 и 1,0.

Резонансный (вибрационный) частотомер. Электромагнитные механизмы нашли применение также для изготовления частстомеров, предназначенных для контроля частот 50 и 400Гц. Такие частотомеры (рис. 2.25) состоят из электромагнита 1 с сердечником 2. на обмотку которого подается напряжение с измеряемой частотой. В поле электромагнита находится якорь 3. скрепленный с планкой 4, на которой укреплен ряд стальных пластинок 6 с различными собственными частотами. Пружинные опоры 5 позволяют якорю и пластинкам 6 совершаю вынужденные колебания с удвоенной частотой напряжения. При этом наибольшую амплитуду будет иметь та пластинка, у которой частота собственных колебаний совпадает с частотой второй гармоники вынужденных колебаний.

Электромагнитный прибор Погрешность резонансных частотомеров составляет около 1%. Она определяется размером пластинок и их числом. К достоинствам рассматриваемых приборов относятся их простота и удобство в эксплуатации. Недостатки—узкость пределов измерения (например, 45—55Гц, 350—450Гц) и невозможность использования на подвижных объектах из-за появления паразитных механических вибраций.

Измерительные трансформаторы тока. Как указывалось выше, для расширения пределов измерения электромагнитных амперметров применяются измерительные трансформаторы тока, которые преобразуют большие значения токов I1, в малые I2. Коэффициент трансформации К1=I1/I2 в основном определяется отношением числа витков во вторичной обмотке w2 к их числу в первичной обмотке w2. т.е. К w2 /w1. Схема включения амперметра с трансформатором тока ТА представлена на рис. 2.26. Чтобы получить значение измеряемого тока I1 следует измеренное амперметром значение тока I2 умножить на коэффициент трансформации:

Электромагнитный прибор

На практике вместо действительного коэффициента трансформации К I приходится использовать номинальный коэффициент трансформации КI н , что приводит к погрешности определения тока I1. Классы точности трансформаторов тока переносных лабораторных: 0,01; 0,02; 0,05; 0,1; 0,2; стационарных, устанавливаемых на подстанциях: 0,2; 0,5; 1,0; 3; 5; 10. Номинальные значения сопротивления нагрузки в цепи вторичной обмотки лежат в пределах от 0,2 до 2,0Ом. Увеличение сопротивления нагрузки приводит к увеличению погрешностей. Размыкание вторичной обмотки недопустимо, так как оно вызывает появление на разомкнутых концах высокого напряжения, опасного длялюдей и способного привести к нарушению изоляции.

Электромагнитный приборИзмерительные трансформаторы напряжения. Для расширения пределов измерения вольтметров электромагнитной, электродинамической и электростатической систем применяются измерительные трансформаторы напряжения, которые преобразуют высокое напряжение U1 подводимое к первичной обмотке, в низкое U2 , снимаемое со вторичной. Коэффициент трансформации КU =U1/U2 приближенно равен отношению числа витков первичной обмотки ю, к числу витков во вторичной, т.е. К w1/w2. Схема включения вольтметра с трансформатором напряжения ТV представлена на рис. 2.27. Значение измеряемого напряжения U1 определяется из формулы U1=KUU2 Использование вместо действительного коэффициента трансформации К

приводит к погрешностям определения напряжения U1,. Классы точности лабораторных трансформаторов напряжения: 0,05; 0,1; 0,2; стационарных: 0,2; 0,5; 1,0; 3.

Электромагнитные приборы

Устройство и принцип действия электромагнитного ИМ

Принцип действия электромагнитного измерительного механизма основан на взаимодействии магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника .

В настоящее время чаще других применяют электромагнитные измерительные механизмы с прямоугольным и круглыми намагничивающими катушками, призматическими и цилиндрическими сердечниками. На рис. 4.6 показана конструкция электромагнитного измерительного механизма втяжного действия.

Электромагнитный прибор

Рис. 4.7. Устройство электромагнитного механизма

При прохождении тока I по намагничивающей катушке 1 создается магнитное поле. Ферромагнитный сердечник 2, закрепленный на оси 3, при этом стремится расположиться в месте с наибольшей напряженностью поля, т. е. втягивается в зазор катушки. В электромагнитном приборе с осью 3 связана стрелка 4, которая перемещается по шкале 5. Электромагнитная энергия. создаваемая катушкой с током, определяется следующим образом: We = LI 2 /2, где L — индуктивность катушки 1, зависящая от положения ферромагнитного сердечника 2.

Выражение для вращающего момента представляется как

При создании противодействующего момента с помощью пружинок получим уравнение преобразования электромагнитного прибора

следует, что угол отклонения подвижной части электромагнитного механизма не зависит от направления тока, и эти ИМ могут использоваться в цепях постоянного и переменного тока. В цепи переменного тока угол отклонения подвижной части ИМ зависит от квадрата действующего значения тока.

Области применения, достоинства и недостатки

Приборы на основе электромагнитного измерительного механизма применяются для измерения тока и напряжения в цепях постоянного и переменного тока. Наиболее просто реализуются однопредельные электромагнитные амперметры и миллиамперметры. В однопредельном амперметре катушка включается непосредственно в цепь тока, как показано на рис. 4.8 а, в вольтметре последовательно с катушкой включается добавочный резистор (рис. 4.8 б).

Электромагнитный прибор

Рис. 4.8. Схема однопредельного электромагнитного амперметра (а) и вольтметра (б)

Электромагнитный прибор

Рис. 4.9. Схема трехпредельного электромагнитного амперметра

В многопредельных амперметрах рабочую катушку выполняют из нескольких секций, которые соединяются между собой с помощью переключателя различным образом. На рис. 4.9 показана схема трехпредельного амперметра. В многопредельных вольтметрах последовательно включаются несколько добавочных резисторов, которые переключаются в зависимости от предела.

Промышленностью выпускаются электромагнитные амперметры с номинальным током от долей ампера до двухсот ампер. Большое распространение получили щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,5 и 2,5. В некоторых случаях они могут использоваться на повышенных частотах (амперметры до 8 кГц). Лабораторные приборы выпускаются классов точности 0,5 и 1,0. Кроме рассмотренных измерительных механизмов, применяют также и электромагнитные логометрические механизмы.

Электромагнитные приборы обладают рядом достоинств. к которым можно отнести:

1) возможность использования как на постоянном, так и на переменном токе;

2) простоту конструкции и дешевизну;

3) надежность в эксплуатации;

4) широкий диапазон пределов измерений;

5) способность выдерживать большие перегрузки и др.

1) большое собственное потребление энергии;

2) малая чувствительность;

3) сильное влияние внешних магнитных полей;

4) неравномерность шкалы.

Следует отметить, что изменяя форму сердечника и его расположение в катушке, можно получить практически равномерную шкалу, начиная с 20-25 % верхнего предела измеряемой величины.

Погрешности электромагнитных приборов

Погрешности электромагнитных приборов обусловлены следующими причинами: трением в опорах, гистерезисом материала сердечника, нагревом рабочей катушки, проходящим по ней током, изменением температуры окружающей среды и др. Рассмотрим погрешности, характерные для электромагнитных приборов.

Погрешность от гистерезиса материала сердечников проявляется при работе на постоянном токе.

Погрешность от нагрева рабочей катушки проходящим по ней током обусловлена изменением сопротивления катушки и пружин.

Температурная погрешность обусловлена изменением температуры окружающей среды и характерна для вольтметров, и определяется изменением сопротивления цепи катушки и упругости пружин (или растяжек).

Для компенсации температурной погрешности используются различные компенсационные схемы.

5.189.137.82 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам.

15. Электромагнитные приборы, принцип действия, достоинства, недостатки, область применения

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Принцип работы приборов этой системы основан на взаимодействии магнитного поля, создаваемого катушкой со стальным сердечником, помещенным в поле этой катушки. Электромагнитный измерительный механизм выполняют с плоской или круглой катушкой.

Достоинством приборов электромагнитной системы являются простота и надежность конструкции, невысокая стоимость, стойкость к перегрузкам и пригодность для измерений в цепях переменного и постоянного тока.

К недостаткам относятся невысокая точность, малая чувствительность, неравномерность шкалы и зависимость показаний от внешних магнитных полей и частоты переменного тока.

Электромагнитные приборы используют. главным образом, для измерения тока и напряжения в промышленных установках переменного тока.

16. Электродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек одной, неподвижно закрепленной, и другой, сидящей на оси и могущей поворачиваться.

Достоинствами электродинамических приборов являются пригодность для измерения постоянного и переменного тока, равномерность шкалы у ваттметров и относительно высокая точность по сравнению с другими приборами, предназначенными для измерений в цепях переменного тока.

К недостаткам относится сильное влияние внешних магнитных полей на точность измерений, чувствительность к перегрузкам и относительно высокая стоимость.

Электродинамические приборы применяют обычно в качестве точных лабораторных приборов, а также в качестве ваттметров и счетчиков электрической энергии в цепях постоянного тока.

17.Ферродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Работа ферродинамических приборов основана на том же принципе, что и приборов электродинамической системы. Для усиления магнитного поля в ферродинамическом измерительном механизме применен магнитопровод из ферромагнитного материала.

Ферродинамические приборы используют в качестве щитовых амперметров, ваттметров и вольтметров, работающих в условиях тряски и вибраций (например, на э. п. с. переменного тока). Кроме того, их применяют в качестве самопишущих приборов, так как они имеют значительный вращающий момент, преодолевающий трение в записывающих устройствах.

Достоинства: незначительное влияние внешних магнитных полей, большой вращающий момент, прочная конструкция, устойчивость к вибрациям и ударам, небольшая потребляемая мощность.

Недостатки: дополнительные погрешности вследствие влияния гистерезиса и вихревых токов, зависимость показаний от частоты, невысокая точность щитовых приборов – обычно 1,5; 2,0.

18 Электростатические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия. основой электростатических приборов является электростатический измерительный механизм с отсчетным устройством.

Они применяются. главным образом, для измерения напряжений переменного и постоянного тока. Находят применение также электрометры — электростатические приборы специальной конструкции, требующие вспомогательных источников питания. Электрометры обладают повышенной чувствительностью к напряжению.

Достоинствами электростатических приборов являются:

малое собственное потребление мощности, что объясняется малыми токами утечки и малыми диэлектрическими потерями в изоляции, малой емкостью измерительного механизма, большой диапазон измеряемых напряжений, возможность измерений на постоянном и на переменном токе, независимость показаний от частоты в широком диапазоне и формы измеряемого напряжения, независимость показаний от внешних магнитных полей.

К недостаткам электростатических приборов можно отнести:

малую чувствительность по напряжению, влияние внешних электростатических полей, что требует экранирование измерительного механизма, неравномерную шкалу (при соответствующем выборе формы подвижных и неподвижных электродов можно получить практически равномерную шкалу на участке от 15-25 % до 100 % от ее номинального значения).

Электромагнитные приборы и их устройство

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Электромагнитные приборы и их устройство

Принцип работы приборов этой системы основан на взаимодействии магнитного поля, создаваемого катушкой 1 со стальным сердечником 3, помещенным в поле этой катушки. Электромагнитный измерительный механизм выполняют с плоской или круглой катушкой.

В приборах с плоской катушкой сердечник установлен на оси, несущей стрелку. При прохождении тока по катушке 1 сердечник 3 будет намагничиваться и втягиваться в катушку, поворачивая ось и стрелку. Повороту оси препятствует спиральная пружина 2. Когда усилие, создаваемое пружиной, уравновесит усилие, созданное катушкой, подвижная система прибора остановится и стрелка зафиксирует на шкале определенный ток. электромагнитный ток катушка

Вращающий момент, воздействующий на подвижную часть прибора, пропорционален силе притяжения F электромагнита, под действием которой сердечник втягивается в катушку.

Применение. Электромагнитные приборы используют, главным образом, для измерения тока и напряжения в промышленных установках переменного тока. При периодическом изменении тока, проходящего через прибор, усилие, создаваемое его катушкой, не будет изменяться по направлению, так как оно пропорционально квадрату тока. Угол отклонения стрелки определяется некоторым средним усилием F, значение которого пропорционально среднему квадратичному значению тока или напряжения. Следовательно, электромагнитные приборы в цепях переменного тока измеряют действующие значения тока или напряжения.

Катушка при измерениях может быть включена в электрическую цепь последовательно или параллельно двум точкам, между которыми действует некоторое напряжение. В первом случае прибор будет работать в качестве амперметра, во втором — в качестве вольтметра.

Достоинством приборов электромагнитной системы являются простота и надежность конструкции, невысокая стоимость, стойкость к перегрузкам и пригодность для измерений в цепях переменного и постоянного тока. К недостаткам относятся невысокая точность, малая чувствительность, неравномерность шкалы и зависимость показаний от внешних магнитных полей и частоты переменного тока.

Магнитоэлектрические приборы

Устройство и принцип действия. Магнитоэлектрический измерительный механизм выполнен в виде постоянного магнита 1, снабженного полюсными наконечниками 2, между которыми укреплен стальной сердечник 3. В кольцеобразном воздушном зазоре, образованном полюсными наконечниками и сердечником, помещена подвижная катушка 5, намотанная на алюминиевый каркас 6. Катушка выполнена из очень тонкого провода и укреплена на оси, связанной со стрелкой спиральными пружинами 4 или растяжками. Через эти же пружины или растяжки осуществляется подвод тока к катушке.

Применение прибора. Приборы магнитоэлектрической системы применяют для измерения тока и напряжения в электрических цепях постоянного тока. В частности, на э.п.с. и тепловозах их используют в качестве амперметров и вольтметров. В амперметрах и вольтметрах катушка прибора имеет различное сопротивление и включается по различным схемам.

Для уменьшения проходящего по катушке тока и компенсации влияния температуры на показания прибора в вольтметрах последовательно с катушкой включают добавочный резистор, который обычно встраивается в корпус прибора. Сопротивление этого резистора значительно больше сопротивления катушки, и он выполнен из материала, электрическое сопротивление которого весьма мало зависит от температуры (константан, манганин и пр.). В амперметрах параллельно катушке прибора часто включают образцовый резистор, называемый шунтом.

Сопротивление шунта значительно меньше сопротивления катушки прибора, вследствие чего измеряемый ток в основном проходит по шунту. Шунты и добавочные резисторы служат для расширения пределов измерения приборов.

Из принципа действия магнитоэлектрического прибора следует, что направление отклонения его стрелки зависит от направления тока I, проходящего по катушке. Следовательно, при включении этих приборов в цепь постоянного тока должна быть соблюдена правильная полярность, при которой стрелка отклоняется в требуемую сторону. Для переменного тока магнитоэлектрические приборы непригодны, так как при питании катушки переменным током среднее значение создаваемого ею вращающего момента равно нулю и стрелка прибора будет стоять на нуле, испытывая чуть заметные колебания.

Достоинством приборов магнитоэлектрической системы являются равномерность шкалы, высокая точность и независимость показаний от посторонних магнитных полей. К недостаткам их относятся непригодность для измерения переменного тока, необходимость соблюдения полярности при включении и чувствительность к перегрузкам (при перегрузке тонкая проволока катушки и спиральные пружины, подводящие к ней ток, могут сгореть).

Электродинамические приборы

Устройство и применение электродинамического прибора. Работа электродинамического прибора основана на взаимодействии двух катушек, обтекаемых электрическим током.

Электродинамический измерительный механизм состоит из двух катушек: неподвижной 2 и расположенной внутри нее подвижной 1. Подвижная катушка 1 связана с осью прибора со стрелкой и с двумя спиральными пружинами 4 (или растяжками), которые служат для создания противодействующего момента и подвода тока к подвижной катушке 1.

В приборе применяется демпфер 3, аналогичный ранее рассмотренному.

При прохождении по катушкам токов I1 и I2 возникают электродинамические силы F, которые стремятся повернуть подвижную катушку относительно неподвижной на некоторый угол. Вращающий момент, действующий на подвижную катушку,

где с1 — постоянная величина, зависящая от параметров катушек (числа витков и размеров), их формы и взаимного расположения.

Повороту подвижной катушки противодействует момент Мпр = = с2б. В момент равновесия М = Мпр, откуда

б = (c1/c2) I1I2 = kI1I2 (2)

где к — постоянная величина.

При переменном токе мгновенное значение вращающего момента М пропорционально произведению мгновенных значений токов i1 и i2, проходящих по катушкам. Средний же за период вращающий момент

Mcp = c1I1I2 cos ц (3)

где I1 и I2 — действующие значения токов i1 и i2; ц — угол сдвига фаз между ними.

Поэтому при переменном токе

Значение вращающего момента М, созданного катушками электродинамического прибора, а следовательно, и угол поворота стрелки Д пропорциональны произведению проходящих по катушкам токов I1 и I2. Поэтому в зависимости от схемы включения катушек прибор может быть использован в качестве амперметра, вольтметра и ваттметра.
При включении обеих катушек прибора последовательно в цепь измеряемого тока прибор будет работать в качестве амперметра; при подключении катушек к двум точкам, между которыми действует подлежащее измерению напряжение,

Размещено на Allbest.ru

Подобные документы

Электродинамические измерительные приборы и их применение. Электродинамический преобразователь. Взаимодействие магнитных полей токов. Амперметры, ваттметры, фазометры на основе электродинамических преобразователей. Электромагнитные измерительные приборы.

реферат [101,8 K], добавлен 12.11.2008

Особая точность электродинамических приборов, их разновидности и применение для определения тока и напряжения в цепях переменного и постоянного тока. Принцип действия ваттметра, устройство магнитоэлектрического логометра, их распространение и применение.

реферат [511,9 K], добавлен 25.11.2010

Сила тока в резисторе. Действующее значение силы переменного тока в цепи. График зависимости мгновенной мощности тока от времени. Действующее значение силы переменного гармонического тока и напряжения. Сопротивление элементов электрической цепи.

презентация [718,6 K], добавлен 21.04.2013

Расчет сопротивления внешнего шунта для измерения магнитоэлектрическим амперметром силового тока. Определение тока в антенне передатчика при помощи трансформатора тока высокой частоты. Вольтметры для измерения напряжения с относительной погрешностью.

контрольная работа [160,4 K], добавлен 12.05.2013

Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.

презентация [4,6 M], добавлен 22.03.2011

Метрология как наука об измерениях физических величин, методах и средствах обеспечения их единства. Знакомство с основными особенностями комбинированного вольтметра В7-40 для измерения среднеквадратических значений переменного напряжения и тока.

дипломная работа [1,5 M], добавлен 08.11.2013

Номинальная мощность и скорость. Индуктивность якорной обмотки, момент инерции. Электромагнитная постоянная времени. Модель двигателя постоянного тока. Блок Step и усилители gain, их главное назначение. График скорости, напряжения, тока и момента.

лабораторная работа [456,6 K], добавлен 18.06.2015

Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.

лабораторная работа [191,6 K], добавлен 25.01.2015

Особенности управления электродвигателями переменного тока. Описание преобразователя частоты с промежуточным звеном постоянного тока на основе автономного инвертора напряжения. Динамические характеристики САУ переменного тока, анализ устойчивости.

курсовая работа [619,4 K], добавлен 14.12.2010

Номинальные скорость и мощность, индуктивность обмотки якоря, номинальный момент. Электромагнитная постоянная времени. Сборка модели двигателя постоянного тока. Задание параметров электрической части двигателя, механической части момента инерции.

лабораторная работа [282,5 K], добавлен 18.06.2015

§ 2.6. ЭЛЕКТРОМАГНИТНЫЕ ПРИБОРЫ

Принцип действия приборов электромагнитной системы основан на взаимодействии магнитного поля катушки, создаваемого измеряемым током, со стальным сердечником, помещенным в это поле. Неподвижная катушка 1 (рис. 2-6) состоит из каркаса с навитой изолированной медной проволокой или медной лентой. При протекании измеряемого тока по обмотке катушки в ее плоской щели 2 создается магнитное поле. Вне катушки на агатовых подпятниках устанавливается ось 8 с эксцентрично укрепленным сердечником 4 из магнитомягкой стали со стрелкой 5. Магнитное поле катушки намагничивает сердечник и втягивает его внутрь щели, поворачивая тем самым и ось со стрелкой прибора. Этому повороту препятствует закручивающаяся спиральная пружина 6, создающая противодействующий момент.

Пусть катушка с током I создает магнитное поле, которое намагничивает фасонный стальной сердечник и создает некоторую силу F, стремящуюся

повернуть сердечник вокруг оси (рис. 2-7). При переме щении точки С сердечника По дуге будет совершена работа

где R — радиус вращения точки центральный угол, соответствующий дуге .

Работа совершается за счет энергии магнитного поля катушки поэтому

Учитывая, что получим:

Повороту сердечника противодействует спиральная пружина, создавая противодействующий момент

где k — жесткость пружины, а угол поворота сердечника. Тогда при достижении равновесия

Вообще говоря, и сильно зависит от формы сердечника. Положив в пределах поворота сердечника , получим:

Полученный результат показывает, что шкала электромагнитного прибора неравномерная. Она, в основном, должна быть квадратичной, т. е. сжатой в начале и растянутой в конце. Однако путем придания фасонной формы сердечнику и расположением его в катушке (что приведет к изменению множителя ) можно существенно улучшить характер шкалы, сделав ее практически равномерной в рабочей части.

Направление отклонения стрелки прибора не зависит от направления тока в катушке, так как при изменении направления тока одновременно изменяется направление магнитной индукции внутри катушки и в сердечнике, а характер их взаимодействия (притягивание) не изменяется. Этот же вывод следует и из выражения вращающего момента (2.8), в которое значение тока входит в квадрате. Поэтому приборы электромагнитной системы пригодны

и для измерения переменных токов. При измерении переменного тока подвижная система прибора поворачивается на некоторый угол, определяемый средним значением вращающего момента за период. Определим вращающий момент подвижной системы прибора.

Пусть измеряемый ток изменяется по закону

тогда мгновенное значение вращающего момента равно

а среднее за период значение этого момента

Таким образом, среднее значение вращающего момента, действующего на подвижную систему электромагнитного прибора при измерениях переменного тока, пропорционально квадрату действующего значения переменного тока, т. е. . Квадратичная зависимость угла поворота подвижной системы электромагнитного прибора от тока имеет простое физическое объяснение: ток в катушке создает магнитное поле, которое намагничивает сердечник. В результате намагниченный сердечник взаимодействует с катушкой, при этом намагниченность сердечника изменяется вместе с изменениями тока в катушке.

Мы рассмотрели устройство и действие приборов с плоской катушкой. Помимо этой конструкции в настоящее время широкое применение получили так называемые приборы с круглой катушкой (рис. 2-8). Измеряемый ток протекает по обмотке круглой катушки 1 и создает внутри нее магнитное поле, в котором помещаются два стальных сердечника: один — неподвижный 2, прикрепленный к каркасу, другой — подвижный 3, связанный с осью прибора. Близлежащие концы сердечника под действием магнитного поля катушки намагничиваются одноименно и отталкиваются, вызывая соответствующий измеряемому току поворот подвижной системы. Очевидно, что приведенные рассуждения, относящиеся к приборам с плоской катушкой, справедливы и для приборов о круглой катушкой.

Электромагнитные приборы применяются как амперметры и как вольтметры. В последнем случае обмотка выполняется большим числом витков тонкой медной проволоки.

Применение стальных сердечников в электромагнитных приборах вызывает разные показания при измерениях в цепях постоянного и переменного токов, так как в цепях переменного тока добавляются потери на гистерезис и на вихревые токи. Поэтому электромагнитные приборы, как правило, градуируют либо для постоянного тока, либо для переменного. Для уменьшения погрешности от гистерезиса сердечники некоторых приборов (класс 0,2) изготовляют из специального сплава — пермаллоя с особо малым значением коэрцитивной силы. Для исключения влияния внешних полей у некоторых электромагнитных приборов применяют астатические измерительные механизмы (см. рис. 2-4, а).

Для успокоения колебаний подвижной системы в электромагнитных приборах с плоской катушкой применяют воздушные успокоители, а в приборах с круглой катушкой — чаще магнитоиндукционные.

Достоинствами электромагнитных приборов являются: простота конструкции; способность выдерживать большие перегрузки, пригодность для постоянных и переменных токов, невысокая стоимость и возможность широкого использования в качестве щитовых приборов.

Недостатки этих приборов — неравномерная шкала, влияние внешних магнитных полей на показания приборов, малая чувствительность.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *