Гомойотермные организмы

организм терморегуляция рецептор

Выдающийся русский физиолог И. М. Сеченов еще в 1861 г. писал: «Организм без внешней среды, поддерживающей его существование, невозможен, поэтому в научное определение организма должна входить и среда, влияющая на него».

Ежедневно мы убеждаемся в несомненной правоте ученого. Жизнь человека — это постоянное взаимодействие его с окружающей средой и взаимная зависимость.

Физиология целостного организма изучает не только внутренние механизмы саморегуляции физиологических процессов, но и механизмы, обеспечивающие непрерывное взаимодействие и неразрывное единство организма с окружающей средой. Непременным условием и проявлением такого единства является адаптация организма к данным условиям.

Возьмем, к примеру, метеорологический фактор. Солнечные бури, резкие перепады атмосферного давления и температуры воздуха особенно отрицательно влияют на человека. Так, вспышка болезней отмечалась в Ташкенте в ноябре 1954 года, когда в течение одних суток теплая погода с температурой воздуха +15°С сменилась морозом -21°С.

Однако постепенный переход от тепла к холоду и наоборот не столь опасен для организма, как резкое изменение температуры. Это связано со способностью человеческого тела постепенно адаптироваться к воздействию внешней среды.

Адаптационные возможности организма человека исследовали многие ученые — Эрнст Генрих Вебер, Клод Бернар, Уолтер Кеннон, И.П. Павлов, П. К. Анохин, П. Д. Горизонтов, Г. Н. Кассиль и другие. Несмотря на многочисленность научных трудов, посвященных вопросам адаптации организма к воздействию различных температур, эта проблема ещё не является окончательно исследованной. Это обусловливает актуальность исследования проблем терморегуляции и температурной адаптации.

Целью исследования является изучение системы адаптации организма человека к воздействию различных температур.

Для достижения указанной цели будут решены следующие задачи:

Ш дана характеристика человеку как гомойотермному организму;

Ш исследованы механизмы физической и химической терморегуляции;

Ш рассмотрены проблемы адаптации организма к воздействию различных температур;

Ш проанализирована патофизиология терморегуляции (гипертермии и гипотермия).

Теоретическую базу исследования составили книги и учебные пособия Р. Шмидта, Г. Тевса, Н.А. Агаджаняна, В.Б. Брина, А.В. Завьялова, В.М. Смирнова, В.М. Покровского, Г.Ф. Коротько и других авторов.

Работа состоит из введения, трех глав, заключения и списка использованной литературы.

Человек как гомойотермный организм

Понятие пойкилотермных и гомойотермных организмов

Температура окружающей среды оказывает большое влияние на физиологическую активность живых организмов. В разных регионах Земли температура колеблется от — 50° во время арктической зимы до + 60°С летом в некоторых пустынях. Однако температурный диапазон, в котором способны функционировать живые клетки, значительно меньше, а при температуре ниже 0°С они замерзают.

Тем не менее, многие организмы научились адаптироваться к изменяющимся условиям окружающей среды. В животном мире существует несколько основных способов реагирования на внешнюю температуру. По этому признаку их можно классифицировать на два основных типа (рис.1).

Гомойотермные организмы

Рисунок 1. Классификация животных по способу реагирования на внешнюю среду

У пойкилотермных животных (от греч. poikilos — изменчивый), к которым относится большинство беспозвоночных и низших позвоночных, температура тела зависит от температуры окружающей среды. Интенсивность энергетических процессов и уровень активности пойкилотермных организмов определяются температурой внешней среды Агаджанян Н.А. Основы физиологии человека. — 2-е изд. испр. — М. РУДН, 2001. — С.296..

Гомойотермные организмы (от греч. homeo — одинаковый) способны поддерживать температуру тела на относительно постоянном уровне с суточными и сезонными колебаниями, не превышающими 2°С. К данной категории относятся птицы и млекопитающие, в том числе человек.

Интересно, что данная классификация является современной трансформацией первой аналогичной классификации, предложенной более двух тысяч лет назад Аристотелем, разделившим животных на холодных (холоднокровных) и теплых (теплокровных).

Соотношение температуры тела у животных и температуры окружающей среды представлено на рисунке 2.

Гомойотермные организмы

Рисунок 2. Соотношение температуры тела у животных и температуры окружающей среды

Гомойотермные животные отличаются от близких по массе пойкилотермных организмов значительно более высоким уровнем энергетического обмена и относительно независимым от температуры окружающей среды уровнем активности.

Существуют животные, которые обладают способностью переходить на некоторое время из гомойотермного состояния в пойкилотермное и наоборот. Такой переход наблюдается у животных, впадающих в зимнюю спячку (сурки, суслики, сони и др.), отчего они получили название гетеротермных.

Гетеротермия — это особое состояние, при котором гомойотермные животные на время выключают терморегуляцию и температура их тела снижается до пределов, отличных приблизительно на 2°С от окружающей среды. Гетеротермия является свойством, приобретенным в процессе эволюции позже, чем гомойотермия, и имеет важное значение для приспособления организма к неблагоприятным условиям

Гомойотермные (теплокровные) организмы

К этой группе относят два класса высших позвоночных – птицы и млекопитающие. Принципиальное отличие теплообмена гомойотермных (от греч. homoios – одинаковый, подобный) животных от пойкилотермных заключается в том, что у них функционирует комплекс активных регуляторных механизмов поддержания теплового гомеостаза внутренней среды организма. Благодаря этому биохимические и физиологические процессы всегда протекают в оптимальных температурных условиях.

Интенсивность метаболизма у гомойотермных организмов на один-два порядка выше, чем у пойкилотермных. В основе их теплового баланса лежит использование собственной теплопродукции. Поэтому птиц и млекопитающих относят к эндотермным организмам. Эндотермия – важное свойство, благодаря которому существенно снижается зависимость жизнедеятельности организма от температуры внешней среды.

Температура тела гомойотермных животных характеризуется довольно высоким постоянством. Даже у арктических и антарктических видов при температуре среды до минус 50°С температура тела колеблется не более чем в пределах 2 – 4°С (и составляет у птиц около +41°С).

У млекопитающих температура тела несколько ниже, чем у птиц, и у многих видов подвержена более сильным колебаниям. Характерны видовая специфичность температуры тела млекопитающих. Межвидовые отличия укладываются в диапазон 30 – 39°С. Для многих млекопитающих характерно снижение температуры во время сна (от десятых долей градуса до 4 – 5°С).

У всех гомойотермных животных наружные слои тела (покровы, часть мускулатуры и т.д.) образуют оболочку, температура которой изменяется в широких пределах. Таким образом, устойчивая температура характеризует лишь область локализации важных внутренних органов и процессов.

Механизмы терморегуляции. Физиологические механизмы, обеспечивающие тепловой гомеостаз организма, подразделяются на две функциональные группы: механизмы химической и физической терморегуляции.

Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Это процесс рефлекторного усиления либо уменьшения теплопродукции в ответ на снижение либо повышение температуры окружающей среды.

Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдаётся во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма.

Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре. Терморегуляционный тонус выражен микросокращениями фибрилл, что регистрируется в виде повышения электрической активности внешне неподвижной мышцы при её охлаждении. При этом наблюдается повышение потребления мышцей кислорода более чем на 15%. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300-400% .

При длительном воздействии холода сократительный тип термогенеза может быть замещён (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ.

У млекопитающих (а также возможно и у птиц) существует ещё одна форма недрожевого термогенеза, связанная с окислением особой бурой жировой ткани, откладывающейся в области межлопаточного пространства, шеи и грудной части позвоночника. Бурый жир содержит большое количество митохондрий и пронизан многочисленными кровеносными сосудами. Под действием холода увеличивается кровоснабжение бурого жира, интенсифицируется его дыхание, возрастает выделение тепла. Важно, что при этом непосредственно нагреваются расположенные вблизи органы: сердце, крупные сосуды, лимфатические узлы, а также центральная нервная система. Бурый жир используется, главным образом, как источник экстренного теплообразования.

Физическая терморегуляция – процесс поддержания оптимальной температуры тела регулированием теплоотдачи при помощи комплекса морфофизиологических механизмов.

Теплоизоляционные структуры (перьевой, волосяной покровы) удерживают вокруг тела слой воздуха, который играет роль теплоизолятора. Рефлекторное управление (пиломоторная реакция) параметрами покровов (объём, плотность и т.п.) обеспечивает быстрый и эффективный ответ организма на нарушения теплового баланса при меньших по сравнению с химической терморегуляцией затратах энергии.

Для гомойотермных животных характерны охлаждающие механизмы регулируемого испарения воды (пота с поверхности кожи, влаги слизистых оболочек с поверхности ротовой полости и верхних дыхательных путей с изменением частоты дыхания), а также сосудистые реакции (при которых изменение теплоотдачи достигается расширением и сужением мелких кровеносных сосудов, расположенных близко к поверхности кожи).

Гомойотермные организмы В выступающих или поверхностных частях тела у ряда животных, например, в ластах китов, в лапах некоторых птиц имеется приспособление – «чудесная сеть», сплетение сосудов, в котором вены плотно прижаты к артериям (рисунок 7.1). Текущая по артериям кровь отдает тепло венам, оно возвращается к телу, а артериальная поступает в конечности охлажденной. При этом конечности оказываются пойкилотермными, но температура остального тела поддерживается с меньшими затратами.

Рисунок 7.1 – «Чудесная сеть»

Поведенческие адаптации направлены на более экономичное расходование энергии на терморегуляцию. Характерно использование и поддержание особенностей микроклимата.

Обратимая гипотермия – способность некоторых групп гомойотермных животных подобно пойкилотермным впадать в состояние оцепенения со снижением интенсивности метаболизма и понижением температуры тела. У видов с сезонной и суточной ритмикой гипотермии развиты эндогенные биологические часы, основанные на термофотопериодической реакции.

Температура как абиотический фактор среды

В природе одним из важных лимитирующих факторов среды является температура. Влияние температуры на большинство организмов проявляется в регулировании биохимических и физиологических процессов жизнедеятельности. Температура может влиять на характер поведения и географическое распределение организмов. Для температурного фактора характерны широкие географические, сезонные и суточные колебания. Пределами толерантности для любого вида являются температуры, при которых наступает денатурация белков. Это приводит к потере активности ферментов и необратимому изменению коллоидных свойств цитоплазмы. Диапазон переносимых температур у разных видов сильно варьирует, но, как правило, находится в пределах от 0 до +50 °C.

Пойкилотермные и гомойотермные организмы

В зависимости от способа терморегуляции выделяют две группы организмов: пойкилотермные и гомойотермные.

Пойкилотермные организмы (от греч. poikilos — изменчивый, меняющийся, therme — тепло) — организмы, температура тела которых непостоянна и изменяется вместе с температурой окружающей среды. К ним относятся все растения, грибы, протисты, беспозвоночные животные, рыбы, земноводные и пресмыкающиеся.

Гомойотермные организмы (от греч. homoios — одинаковый, сходный, therme — тепло) — организмы, способные поддерживать относительно постоянную температуру тела при изменении температуры окружающей среды. К ним относятся птицы и млекопитающие (в том числе человек). Гомойотермные организмы способны сохранять активность в широком диапазоне температур. Пойкило термные организмы впадают в оцепенение при низких температурах, а некоторые обитатели пустынь — и при высоких температурах.

Всегда ли гомойотермные организмы поддерживают постоянную температуру тела? Известно, что некоторые виды млекопитающих и птиц способны впадать в оцепенение, внешне сходное с холодовым оцепенением пойкилотермных животных. При этом температура их тела снижается практически до уровня температуры окружающей среды. Нерегулярное оцепенение наблюдается у ласточек, стрижей, многих грызунов, некоторых сумчатых в связи с резким похолоданием, дождями или снегопадами. Сезонное оцепенение, которое принято называть зимней спячкой. характерно для сурков, сусликов, ежей, летучих мышей, бурых медведей. Вышеназванные виды птиц и млекопитающих выделяют в отдельную группу гетеротермных животных (от греч. heteros — иной, другой, therme — тепло).

Адаптации растений к различным температурным условиям

Жизнедеятельность растений в значительной степени зависит от температуры окружающей среды. По потребности к количеству тепла их разделяют на три экологические группы: теплолюбивые, мезотермные и холодостойкие.

Теплолюбивые растения произрастают в тропическом, субтропическом поясах и хорошо прогреваемых местообитаниях умеренного пояса. У теплолюбивых растений выработались адаптации к действию высоких температур. Мезотермные и холодостойкие растения. населяющие умеренный и холодный пояса, вынуждены адаптироваться к низким температурам. Все адаптации растений к температуре можно разделить на три типа: биохимические, физиологические и морфологические.

Биохимические адаптации

При высокой температуре в цитоплазме клеток теплолюбивых растений увеличивается содержание защитных веществ (органических кислот, солей, слизи). Они препятствуют свертыванию цитоплазмы и нейтрализуют токсичные вещества.

У холодостойких растений при низких температурах происходит накопление углеводов (в основном глюкозы) в клеточном соке, что снижает точку замерзания воды.

Физиологические адаптации

Эффективной защитой растений от перегрева служит усиленная транспирация (испарение воды) благодаря большому количеству устьиц.

У растений пустынь и степей короткий цикл развития позволяет избегать действия высоких температур. Вся вегетация у них происходит ранней весной. А летнюю жару они переживают в состоянии покоя. Однолетние растения, у которых состояние покоя проходит в виде семян, называют эфемерами (мак). Многолетники, переживающие неблагоприятный период в виде луковиц, клубней или корневищ, называют эфемероидами (тюльпан).

Крайней мерой в борьбе с холодом или жарой является переход растений в состояние анабиоза (обратимая приостановка жизненных процессов) вследствие обезвоживания. Например, мхи и лишайники могут длительное время находиться в таком состоянии.

Морфологические адаптации

Действие высоких температур на растения субтропического и тропического поясов снижается за счет усиления отражения солнечных лучей и уменьшения светопоглощающей поверхности.

Повышению отражения солнечного света способствует светлая окраска листьев, их блестящая или опушенная поверхность.

Уменьшение поглощения света достигается благодаря видоизменению листовых пластинок. Это могут быть колючки (кактусы) или мелкие (саксаул), рассеченные (пальмы), свернутые (ковыль) листья.

Противодействует перегреву растений вертикальное по отношению к солнечным лучам расположение листьев. Изменение угла их наклона может происходить при повороте листовой пластинки.

Адаптации у растений холодного климата проявляются в виде формирования карликовых жизненных форм (березы, ивы). Встречаются также стелющиеся (кедровый стланик, можжевельник туркестанский) и подушковидные (высокогорные и арктические растения-подушки) жизненные формы. Такие растения меньше подвержены воздействию ветра, лучше укрыты снегом зимой, полнее используют тепло почвы летом.

Адаптации животных к различным температурным условиям

Разнообразие адаптаций животных к неблагоприятным температурным условиям объясняется разными способами терморегуляции у пойкилотермных и гомойотермных организмов. Все адаптации животных по механизму действия разделяют на биохимические, физиологические, морфологические и поведенческие.

Биохимические адаптации

У пойкилотермных животных при переохлаждении происходит накопление «биологических антифризов» (веществ, понижающих точку замерзания воды) в жидкостях тела. Такими веществами у рыб являются гликопротеиды, у насекомых — глицерин, высокие концентрации глюкозы.

У арктических и антарктических рыб отмечается повышенное содержание ненасыщенных жирных кислот в составе жиров, что снижает температуру их затвердевания.

У гомойотермных организмов борьба с переохлаждением происходит за счет повышения интенсивности обмена веществ. У млекопитающих усиливается расщепление особой жировой ткани (бурого жира). Она богата митохондриями и пронизана многочисленными кровеносными сосудами.

Физиологические адаптации

У пойкилотермных организмов регуляция теплообмена происходит благодаря особенностям строения кровеносной системы.

Большое значение для терморегуляции у пойкилотермных животных имеет наличие артериовенозных «теплообменников». Сосуды, выходящие из мышц, тесно соприкасаются с сосудами, идущими от кожи. Кровь кожи согревает кровь мышц, и в глубь тела она поступает теплой. Отдав свое тепло, охлажденная мышечная кровь вновь направляется к поверхности тела. При увеличении температуры окружающей среды у ящериц, например, увеличивается скорость тока крови по сосудам.

При высоких температурах как у пойкилотермных, так и у гомойотермных организмов теплоотдача усиливается за счет испарения влаги с поверхности тела (потоотделение). Влага может испаряться через слизистые оболочки ротовой полости и верхние дыхательные пути (тепловая одышка и др.).

В случае воздействия низких температур у животных может возникнуть мышечная дрожь. Они могут также впадать в спячку.

У млекопитающих с короткой и редкой шерстью важную роль в терморегуляции играют сосудистые реакции. Расширение или сужение мелких поверхностных сосудов кожи усиливает или снижает теплоотдачу.

Морфологические адаптации

Уменьшению потерь тепла у организмов способствуют теплоизолирующие покровы. Пресмыкающиеся имеют роговой покров, птицы — перьевой, млекопитающие — волосяной. Сохранению тепла способствует подкожный жир, особенно выраженный у обитателей холодного климата (ластоногие и китообразные).

Поведенческие адаптации

У пойкилотермных животных существует два типа поведенческих адаптаций. Это активный выбор мест с наиболее благоприятным температурным режимом и смена поз.

В первом случае насекомые, пресмыкающиеся и земноводные активно отыскивают освещенные солнцем места. Получив необходимое количество тепла, животные перемещаются в тень или прячутся в норах и поддерживают температуру за счет мышечных сокращений. У водных животных перемещение происходит между мелководными, хорошо прогреваемыми зонами и более глубоководными прохладными участками.

Смена поз позволяет изменять поверхность тела, прогреваемую солнечными лучами. Например, морские игуаны на Галапагосских островах рано утром или в пасмурную погоду принимают «распростертые» позы, всем телом прижимаясь к субстрату. Это обеспечивает максимальную поверхность обогрева солнцем. При перегреве они принимают «приподнятую» позу. Их грудь и передняя часть тела подняты над субстратом. Это уменьшает поверхность обогрева, и тело обдувается ветром.

Для гомойотермных животных также характерно адаптивное поведение. Оно проявляется в виде выбора мест для защиты от холода или жары, сезонных миграций. Животные могут зарываться в снег, образовывать тесные скопления особей для снижения энергозатрат на терморегуляцию и т. д.

Температура может оказывать лимитирующее действие на организмы вследствие денатурации белков. Это приводит к потере активности ферментов и необратимому изменению коллоидных свойств цитоплазмы. В зависимости от способа терморегуляции организмы разделяют на пойкилотермные и гомойотермные. По отношению к разным температурным условиям среды у организмов выработались биохимические, физиологические, морфологические, а у животных еще и поведенческие адаптации.

Updated: 08.09.2016 at 2:34 дп

Гомойотермные организмы

Гомойотермные организмы — организмы, способные поддерживать внутреннюю температуру тела на относительно постоянном уровне независимо от температуры окружающей среды (птицы и млекопитающие).[. ]

Гетеротермные организмы — группа гомойотермных организмов, у которых периоды сохранения постоянно высокой температуры тела сменяются периодами ее понижения при впадении в спячку в неблагоприятный период года (суслики, сурки, ежи, летучие мыши и др.).[. ]

Мы уже знаем, что гомойотермные животные могут поддерживать температуру тела в гораздо большем диапазоне температур, чем пойкилотермные (см. рис. 3), однако те и другие гибнут при примерно одинаковых чрезмерно высоких или чрезмерно низких температурах (в первом случае — от коагуляции белков, а во втором — вследствие замерзания внутриклеточной воды с образованием кристаллов льда). Но пока этого не произошло, пока температура не достигла критических значений, организм борется за поддержание ее па нормальном или хотя бы на близком к нормальному уровне. Естественно, что в полной мере это свойственно гомойотермным организмам, обладающим терморегуляцией, способным в зависимости от условий усиливать или ослаблять как теплопродукцию, так и теплоотдачу. Теплоотдача — процесс чисто физиологический, он происходит на органном и организменном уровнях, а в основе теплопродукции лежат и физиологические, и химические, и молекулярные механизмы. Прежде всего это озноб, холодовая дрожь, т. е. мелкие сокращения скелетных мышц с низким коэффициентом полезного действия и повышенным образованием тепла. Этот механизм организм включает автоматически, рефлекторно. Эффект его может быть повышен активной произвольной мышечной деятельностью, также усиливающей теплообразование. Не случайно, чтобы согреться, мы прибегаем к движению.[. ]

Естественно, что все эти изменения приводят к нарушению ряда функций организма. В процессе обмена веществ во всяком организме происходит образование тепла. Этой способностью обладают лишь птицы и млекопитающие (как животные, так, естественно, и человек). Их называют гомойотермными организмами. Температура тела беспозвоночных, рыб, амфибий и рептилий зависит от температуры окружающей среды и практически равна ей. Это пойкилотермные организмы. Поэтому термический оптимум, в котором особь ведет активную жизнь, у гомойотермных значительно шире, чем у пойкилотермных, хотя границы выживаемости в условиях температурного максимум- и минимум-пессимума практически одинаковы (рис. 3).[. ]

В зависимости от того, какой источник преобладает в тепловом балансе, живые организмы делят на пойкилотермных и гомойотермных. Пойкилотермные организмы — организмы с непостоянной внутренней температурой тела, меняющейся в зависимости от температуры внешней среды. К ним относятся микроорганизмы, растения, беспозвоночные и низшие позвоночные животные. Температура их тела обычно на 1—2° С выше температуры окружающей среды или равна ей. Гомойо-термные организмы — организмы, способные поддерживать внутреннюю температуру тела на относительно постоянном уровне независимо от температуры окружающей среды. Это птицы и млекопитающие. Если речь идет только о животных, то их еще называют холоднокровными и теплокровными соответственно. Среди гомойотермных организмов выделяют группу гетеро-термных организмов — организмов, у которых периоды сохранения постоянно высокой температуры тела сменяются периодами ее понижения при впадении в спячку в неблагоприятный период года (суслики, сурки, ежи, летучие мыши и др.).[. ]

Было бы заблуждением утверждать, что эктотермы «примитивны», а эндотермы «прогрессивны». Правильнее было бы считать, что эндотермы придерживаются стратегии, приносящей большие выгоды, но сопряженной с немалыми затратами, а эктотермы— стратегии, предполагающей низкие затраты, но иной раз сулящей лишь весьма незначительные выгоды. В силу сказанного для эндотермов, как и для эктотермов, характерно наличие температурного оптимума (т. е. такой температуры окружающей среды, при которой энергозатраты минимальны), а также верхней и нижней границ летальных температур, за пределами которых способность организма к регулированию температуры тела оказывается явно недостаточной. При этом по мере удаления в обе стороны оптимального значения температура среды становится все менее и менее благоприятной для длительного существования организмов, потому что в обмен на преимущества, которыми обладает каждый гомойотермный организм, при таких температурах приходится расходовать все больше и больше энергии.[. ]

Книга: Общая экология

Основной раздел:3.1. Температура

Дополнения к основному разделу:

  • 3.1.1. Температурные границы существования видов
  • 3.1.2. Температура тела и тепловой баланс организмов
  • 3.1.3. Температурные адаптации пойкилотермных организмов
  • > 3.1.4. Температурные адаптации гомойотермных организмов
  • 3.1.5. Экологические выгоды пойкилотермии и гомойотермии
  • 3.1.6. Сочетание элементов разных стратегий

Гомойотермия – принципиально иной путь температурных адаптаций, возникший на основе резкого повышения уровня окислительных процессов у птиц и млекопитающих в результате эволюционного совершенствования кровеносной, дыхательной и других систем органов. Потребление кислорода на 1 г массы тела у теплокровных животных в десятки и сотни раз больше, чем у пойкилотермных.

Основные отличия гомойотермных животных от пойкилотермных организмов: 1) мощный поток внутреннего, эндогенного тепла; 2) развитие целостной системы эффективно работающих терморегуляторных механизмов, и в результате 3) постоянное протекание всех физиологических процессов в оптимальном температурном режиме.

Гомойотермные сохраняют постоянный тепловой баланс между теплопродукцией и теплоотдачей и соответственно поддерживают постоянную высокую температуру тела. Организм теплокровного животного не может быть временно «приостановлен» так, как это происходит при гипобиозе или криптобиозе у пойкилотермных.

Гомойотермные животные всегда вырабатывают определенный минимум теплопродукции, обеспечивающий работу кровеносной системы, органов дыхания, выделения и других, даже находясь в покое. Этот минимум получил название базального метаболизма. Переход к активности усиливает выработку тепла и соответственно требует усиления теплоотдачи.

Теплокровным свойственна химическая терморегуляция – рефлекторное увеличение теплопродукции в ответ на понижение температуры среды. Химическая терморегуляция полностью отсутствует у пойкилотермных, у которых, в случае выделения дополнительного тепла, оно генерируется за счет непосредственной двигательной активности животных.

В противоположность пойкилотермным при действии холода в организме теплокровных животных окислительные процессы не ослабевают, а усиливаются, особенно в скелетных мышцах. У многих животных сначала наблюдается мышечная дрожь – несогласованное сокращение мышц, приводящее к выделению тепловой энергии. Кроме того, клетки мышечной и многих других тканей выделяют тепло и без осуществления рабочих функций, приходя в состояние особого терморегуляционного тонуса. При дальнейшем снижении температуры среды тепловой эффект терморегуляционного тонуса возрастает.

При продуцировании дополнительного тепла особенно усиливается обмен липидов, так как нейтральные жиры содержат основной запас химической энергии. Поэтому жировые запасы животных обеспечивают лучшую терморегуляцию. Млекопитающие обладают даже специализированной бурой жировой тканью, в которой вся освобождающаяся химическая энергия, вместо того чтобы переходить в связи ЛТФ, рассеивается в виде тепла, т. е. идет на обогревание организма. Бурая жировая ткань наиболее развита у животных – обитателей холодного климата.

Поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные при усилении химической терморегуляции либо нуждаются в большом количестве пищи, либо тратят много жировых запасов, накопленных ранее. Например, землеройка бурозубка крошечная имеет исключительно высокий уровень обмена. Чередуя очень короткие периоды сна и активности, она деятельна в любые часы суток и в день съедает корма в 4 раза больше собственной массы. Частота сердцебиения у бурозубок до 1000 в мин. Также и птицам, остающимся на зиму, нужно много корма: им страшны не столько морозы, сколько бескормица. Так, при хорошем урожае семян ели и сосны клесты зимой даже выводят птенцов.

Усиление химической терморегуляции, таким образом, имеет свои пределы, обусловленные возможностью добывания пищи. При недостатке корма зимой такой путь терморегуляции экологически невыгоден. Он, например, слабо развит у всех животных, обитающих за полярным кругом: песцов, моржей, тюленей, белых медведей, северных оленей и др. Для обитателей тропиков химическая терморегуляция также мало характерна, поскольку у них практически не возникает необходимости в дополнительном продуцировании тепла.

В пределах некоторого диапазона внешних температур гомойотермные поддерживают температуру тела, не тратя на это дополнительной энергии, а используя эффективные механизмы физической терморегуляции, позволяющие лучше сохранять или отводить тепло базального метаболизма. Этот диапазон температур, в пределах которого животные чувствуют себя наиболее комфортно, называется термонейтральной зоной. За нижним порогом этой зоны начинается химическая терморегуляция, за верхним – траты энергии на испарение.

Физическая терморегуляция экологически выгодна, так как адаптация к холоду осуществляется не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного. Кроме того, возможна защита от перегрева путем усиления теплоотдачи во внешнюю среду.

Способы физической терморегуляции множественны. В филогенетическом ряду млекопитающих – от насекомоядных к рукокрылым, грызунам и хищникам механизмы физической терморегуляции становятся все более совершенными и разнообразными. К ним следует отнести рефлекторное сужение и расширение кровеносных сосудов кожи, меняющее ее теплопроводность, изменение теплоизолирующих свойств меха и перьевого покрова, противоточный теплообмен путем контакта сосудов при кровоснабжении отдельных органов, регуляцию испарительной теплоотдачи.

Густой мех млекопитающих, перьевой и особенно пуховой покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшить теплоизлучение во внешнюю среду. Теплоотдача регулируется наклоном волос и перьев, сезонной сменой меха и оперения. Исключительно теплый зимний мех млекопитающих Заполярья позволяет им в холода обходиться без существенного повышения обмена веществ и снижает потребность в пище. Например, песцы на побережье Северного Ледовитого океана зимой потребляют пищи даже меньше, чем летом.

У морских млекопитающих – ластоногих и китов – слой подкожной жировой клетчатки распределен по всему телу. Толщина подкожного жира у отдельных видов тюленей достигает 7–9 см, а общая его масса составляет до 40–50 % от массы тела. Теплоизолирующий эффект такого «жирового чулка» настолько высок, что под тюленями, часами лежащими на снегу, снег не тает, хотя температура тела животного поддерживается на уровне 38 °C. У животных жаркого климата подобное распределение жировых запасов приводило бы к гибели от перегрева из‑за невозможности выведения избытка тепла, поэтому жир у них запасается локально, в отдельных частях тела, не мешая теплоизлучению с общей поверхности (верблюды, курдючные овцы, зебу и др.).

Системы противоточного теплообмена, помогающие поддерживать постоянную температуру внутренних органов, обнаружены в лапах и хвостах у сумчатых, ленивцев, муравьедов, полуобезьян, ластоногих, китов, пингвинов, журавлей и др. При этом сосуды, по которым нагретая кровь движется от центра тела, тесно контактируют со стенками сосудов, направляющих охлажденную кровь от периферии к центру, и отдают им свое тепло.

Немаловажное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, так как в конечном счете масштабы продуцирования тепла зависят от массы животного, а теплообмен идет через его покровы.

Связь размеров и пропорций тела животных с климатическими условиями их обитания была подмечена еще в XIX в. Согласно правилу Бергмана (1848), если два близких вида теплокровных животных отличаются размерами, то более крупный обитает в более холодном, а более мелкий – в теплом климате. Бергман подчеркивал, что эта закономерность проявляется лишь в том случае, если виды не отличаются другими приспособлениями к терморегуляции. Из проанализированных им 75 групп птиц в фауне Германии около трети удовлетворяло найденному правилу. Д. Лллен в 1877 г. подметил, что у многих млекопитающих и птиц северного полушария относительные размеры конечностей и различных выступающих частей тела (хвостов, ушей, клювов) увеличиваются к югу – правило Аллена. Терморегуляционное значение отдельных участков тела далеко не равноценно. Выступающие части имеют большую относительную поверхность, которая выгодна в условиях жаркого климата. У ряда млекопитающих, например, особое значение для поддержания теплового баланса имеют уши, снабженные, как правило, большим количеством кровеносных сосудов (рис. 18). Огромные уши африканского слона, маленькой пустынной лисички‑фенека, американского зайца превратились в специализированные органы терморегуляции. При адаптации к холоду проявляется закон экономии поверхности, так как компактная форма тела с минимальным отношением площади к объему наиболее выгодна для сохранения тепла.

Гомойотермные организмы

Рис. 18. Африканский длинноухий тушканчик (по В. Е. Соколову и др. 1977)

Если температура среды превышает верхнюю границу термонейтральной зоны, животным приходится затрачивать дополнительную энергию на испарительную терморегуляцию.

Эффективным механизмом отдачи тепла служит испарение воды путем потоотделения или через влажные слизистые оболочки полости рта и верхних дыхательных путей. Способность к образованию пота у разных видов очень различна. Человек при сильной жаре может выделить до 12 л пота в день, рассеяв при этом тепла в десять раз больше по сравнению с нормой. Выделяемая вода, естественно, должна возмещаться через питье. У некоторых животных испарение идет только через слизистые. У собаки, для которой одышка – единственный способ испарительной терморегуляции, частота дыхания при этом доходит до 300–400 вдохов в минуту. Регуляция температуры через испарение требует траты организмом воды и поэтому возможна не во всех условиях существования.

Поведенческие способы регуляции теплообмена для теплокровных животных не менее важны, чем для пойкилотермных, и также чрезвычайно разнообразны – от изменения позы и поисков укрытий до сооружения сложных нор, гнезд, осуществления ближних и дальних миграций.

В норах роющих животных ход температур сглажен тем сильнее, чем больше глубина норы. В средних широтах на расстоянии 150 см от поверхности почвы перестают ощущаться даже сезонные колебания температуры. В особенно искусно построенных гнездах также поддерживается ровный, благоприятный микроклимат (рис. 19). В войлокообразном гнезде синицы‑ремеза, имеющем лишь один узкий боковой вход, тепло и сухо в любую погоду.

Рис. 19. Особенности строения нор и расположения гнезд разных видов млекопитающих (по Н. П. Наумову, 1963, И. И. Барабаш‑Никифорову, Л. Н. Формозову, 1963):

1 – логово зайца‑русака в песчаных дюнах; 2 – снежная нора зайца&#820&;русака; 3 – летняя нора полуденной песчанки; 4 – нора малого суслика; 5 – нора выхухоли; 6 – хатка ондатры; 7 – гнезда рыжей полевки в дупле дуба; 8 – зимнее гнездо обыкновенной белки

В ряде случаев гомойотермные животные используют в целях терморегуляции групповое поведение. Например, некоторые пингвины в сильный мороз и бураны сбиваются в плотную кучу, так называемую черепаху. Особи, оказавшиеся с краю, через некоторое время пробиваются внутрь, и «черепаха» медленно кружится и перемещается. Внутри такого скопления температура поддерживается около +37 °C даже в самые сильные морозы. Обитатели пустынь верблюды в жару также сбиваются вместе, прижимаясь друг к другу боками, но этим достигается противоположный эффект – предотвращение сильного нагревания всей поверхности тела солнечными лучами. Температура в центре скопления животных равна температуре их тела, 39 °C, тогда как шерсть на спине и боках крайних животных нагревается до 70 °C.

Сочетание эффективных способов химической, физической и поведенческой терморегуляции при общем высоком уровне окислительных процессов в организме позволяет гомойотермным животным поддерживать свой тепловой баланс на фоне широких колебаний внешней температуры.

· 3.1.4. Температурные адаптации гомойотермных организмов
· 3.1.2. Температура тела и тепловой баланс организмов
· 29. Роль живых организмов в биосфере
· § 70. Взаимоотношения организмов. Биотические факторы среды
· Глава 3. Важнейшие абиотические факторы и адаптации к ним организмов
· Глава 4. Основные среды жизни и адаптации к ним организмов
· Глава 6. Адаптивная морфология организмов
· 3.2. Воспроизведение организмов, его значение. Способы размножения, сходство и отличие полового и бесполого размножения.
· § 47. Раздражимость и движение организмов
· 3.1.3. Температурные адаптации пойкилотермных организмов
· 10. Адаптации организмов к условиям обитания как результат действия естественного отбора
· 3.6. Изменчивость признаков у организмов: модификационная, мутационная, комбинативная. Виды мутаций и их причины. Значен.
· 2.4. Принципы экологической классификации организмов
· 2.1. Клеточная теория, ее основные положения, роль в формировании современной естественнонаучной картины мира. Развитие.
· 3.1.5. Экологические выгоды пойкилотермии и гомойотермии

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *